
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Using dumpdb
This page describes and provides advice on how to best use it.dumpdb

On this page:

Overview of Inspection Descriptors
Inspection Flow of Execution
Inspection Descriptor Scopes
Command Line Options for dumpdb
Database Arguments for dumpdb
dumpdb Use Cases

Dump an Entire Database
Dump Selected Records
Creating a Sample Descriptor File
Executing a Descriptor File
Examine the Catalog

Using dumpdb on an Open Environment

Overview of Inspection Descriptors
dumpdb can read from an XML file. A descriptor file has a well-defined structure. The top-level descriptor in the file is . descriptors dumpdb <dumpdb>
A descriptor must be present within to define the key and value types used by the database. Inside , the <database> <dumpdb> <database> <rec

 descriptor triggers database traversal. Shown below is an example that demonstrates the structure of a minimal descriptor file:ord>

XML

<dumpdb>
 <database key="string" value="::Employee">
 <record>
 <echo message="Key: " value="key"/>
 <echo message="Value: " value="value"/>
 </record>
 </database>
</dumpdb>

During traversal, type-specific actions are supported by the descriptor, which is a child of . One descriptor may be <dump> <dumpdb> <dump>
defined for each type in the Slice definitions. Each time encounters an instance of a type, the descriptor for that type is executed.dumpdb <dump>

The , , and descriptors may contain general-purpose action descriptors such as and . These actions <database> <record> <dump> <if> <echo>
resemble statements in programming languages like C++ and Java, in that they are executed in the order of definition and their effects are
cumulative. Actions can make use of the FreezeScript .expression language

Although descriptors are not allowed to modify the database, they can still define local symbols for scripting purposes. Once a symbol is dumpdb
defined by the descriptor, other descriptors such as , , and can be used to manipulate the symbol's value.<define> <set> <add> <remove>

Inspection Flow of Execution
The descriptors are executed as follows:

<database> is executed first. Each child descriptor of is executed in the order of definition. If a descriptor is <database> <record>
present, database traversal occurs at that point. Any child descriptors of that follow are not executed until traversal <database> <record>
completes.
For each record, interprets the key and value, invoking descriptors for each type it encounters. For example, if the value dumpdb <dump>
type of the database is a , then first attempts to invoke a descriptor for the structure type, and then recursively struct dumpdb <dump>
interprets the structure's members in the same fashion.

Inspection Descriptor Scopes
The descriptor creates a global scope, allowing child descriptors of to define symbols that are accessible in any <database> <database>
descriptor.

https://doc.zeroc.com/display/Ice35/FreezeScript+Inspection+XML+Reference
https://doc.zeroc.com/display/Ice35/FreezeScript+Descriptor+Expression+Language

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Furthermore, certain other descriptors create local scopes that exist only for the duration of the descriptor's execution. For example, the <dump>
descriptor creates a local scope and defines the symbol to represent a value of the specified type. Child descriptors of can also value <dump>
define new symbols in the local scope, as long as those symbols do not clash with an existing symbol in that scope. It is legal to add a new symbol
with the same name as a symbol in an outer scope, but the outer symbol will not be accessible during the descriptor's execution.

The global scope is useful in many situations. For example, suppose you want to track the number of times a certain value was encountered during
database traversal. This can be accomplished as shown below:

XML

<dumpdb>
 <database key="string" value="::Ice::Identity">
 <define name="categoryCount" type="int" value="0"/>
 <record/>
 <echo message="categoryCount = " value="categoryCount"/>
 </database>
 <dump type="::Ice::Identity">
 <if test="value.category == `Accounting'">
 <set target="categoryCount" value="categoryCount + 1"/>
 </if>
 </dump>
</dumpdb>

In this example, the descriptor introduces the symbol into the global scope, defining it as type with an initial value <define> categoryCount int
of zero. Next, the descriptor causes traversal to proceed. Each occurrence of the type causes its descriptor to <record> Ice::Identity <dump>
be executed, which examines the member and increases if necessary. Finally, after traversal completes, the category categoryCount <echo>
descriptor displays the final value of .categoryCount

To reinforce the relationships between descriptors and scopes, consider the diagram in the figure below. Several descriptors are shown, including the
symbols they define in their local scopes. In this example, the descriptor has a dictionary target and therefore the default symbol for the <iterate>
element value, , hides the symbol of the same name in the parent descriptor's scope.value <dump>

In addition to symbols in the scope, child descriptors of can also refer to symbols from the and <iterate> <iterate> <dump> <database>
scopes.

In order for a global symbol to be available to a descriptor, the symbol must be defined before the descriptor is <dump> <record>
executed.

This situation can be avoided by assigning a different symbol name to the element value.

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Relationship between descriptors and scopes.

Command Line Options for dumpdb
The tool supports the common to all Slice processors listed. The options specific to are described below:standard command-line options dumpdb

--load SLICE
Loads the Slice definitions contained in the file . This option may be specified multiple times if several files must be loaded. However, SLICE
it is the user's responsibility to ensure that duplicate definitions do not occur (which is possible when two files are loaded that share a
common include file). One strategy for avoiding duplicate definitions is to load a single Slice file that contains only statements for #include
each of the Slice files to be loaded. No duplication is possible in this case if the included files use include guards correctly.

--key TYPE
--value TYPE
Specifies the Slice type of the database key and value. If these options are not specified, and the option is not used, obtains -e dumpdb
type information from the .Freeze catalog

-e
Indicates that a database is being examined. As a convenience, this option automatically sets the database key and value Freeze evictor
types to those appropriate for the Freeze evictor, and therefore the and options are not necessary. Specifically, the key --key --value
type of a Freeze evictor database is , and the value type is . The latter is defined in the Slice file Ice::Identity Freeze::ObjectRecord

, however this file does not need to be explicitly loaded. If this option is not specified, and the and Freeze/EvictorStorage.ice --key -
 options are not used, obtains type information from the .-value dumpdb Freeze catalog

-o FILE
Create a file named containing sample descriptors for the loaded Slice definitions. If type information is not specified, obtains FILE dumpdb
it from the . If the option is used, its expression is included in the sample descriptors. Database traversal does not Freeze catalog --select
occur when the option is used.-o

-f FILE
Execute the descriptors in the file named . The file's descriptor specifies the key and value types; therefore it is not FILE <database>
necessary to supply type information.

--select EXPR
Only display those records for which the is true. The expression can refer to the symbols and .expression EXPR key value

-c, --catalog
Display information about the databases in an environment, or about a particular database. This option presents the type information
contained in the .Freeze catalog

https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice35/Freeze+Catalogs
https://doc.zeroc.com/display/Ice35/Freeze+Evictors
https://doc.zeroc.com/display/Ice35/Freeze+Catalogs
https://doc.zeroc.com/display/Ice35/Freeze+Catalogs
https://doc.zeroc.com/display/Ice35/FreezeScript+Descriptor+Expression+Language
https://doc.zeroc.com/display/Ice35/Freeze+Catalogs

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Database Arguments for dumpdb
If is invoked to examine a database, it requires two arguments:dumpdb

dbenv
The pathname of the database environment directory.

db
The name of the database file. opens this database as read-only, and traversal occurs within a transaction.dumpdb

To display information using the option, the database environment directory is required. If the database file argument is omitted, catalog -c dbenv db
 displays information about every database in the catalog.dumpdb

dumpdb Use Cases
The support several modes of operation:command line options

Dump an entire database.
Dump selected records of a database.
Emit a sample descriptor file.
Execute a descriptor file.
Examine the catalog.

These use cases are described in the following sections.

Dump an Entire Database

The simplest way to examine a database with is to dump its entire contents. You must specify the database key and value types, load the dumpdb
necessary Slice definitions, and supply the names of the database environment directory and database file. For example, this command dumps a
Freeze map database whose key type is and value type is :string Employee

$ dumpdb --key string --value ::Employee --load Employee.ice db emp.db

As a convenience, you may omit the key and value types, in which case obtains them from the :dumpdb catalog

$ dumpdb --load Employee.ice db emp.db

Dump Selected Records

If only certain records are of interest to you, the option provides a convenient way to filter the output of using an . In --select dumpdb expression
the following example, we select employees from the accounting department:

$ dumpdb --load Employee.ice --select "value.dept == 'Accounting'" db emp.db

In cases where the database records contain polymorphic class instances, you must be careful to specify an expression that can be successfully
evaluated against all records. For example, fails immediately if the expression refers to a data member that does not exist in the class dumpdb
instance. The safest way to write an expression in this case is to check the type of the class instance before referring to any of its data members.

In the example below, we assume that a Freeze evictor database contains instances of various classes in a class hierarchy, and we are only
interested in instances of whose employee count is greater than 10:Manager

$ dumpdb -e --load Employee.ice \
--select "value.servant.ice_id == '::Manager' and value.servant.group.length > 10" \
db emp.db

Alternatively, if has derived classes, then the expression can be written in a different way so that instances of and any of its Manager Manager
derived classes are considered:

https://doc.zeroc.com/display/Ice35/Freeze+Catalogs
https://doc.zeroc.com/display/Ice35/Freeze+Catalogs
https://doc.zeroc.com/display/Ice35/FreezeScript+Descriptor+Expression+Language

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

$ dumpdb -e --load Employee.ice \
--select "value.servant.ice_isA('::Manager') and value.servant.group.length > 10" \
db emp.db

Creating a Sample Descriptor File

If you require more sophisticated filtering or scripting capabilities, then you must use a descriptor file. The easiest way to get started with a descriptor
file is to generate a template using :dumpdb

$ dumpdb --key string --value ::Employee --load Employee.ice -o dump.xml

The output file is complete and can be executed immediately if desired, but typically the file is used as a starting point for further dump.xml
customization. Again, you may omit the key and value types by specifying the database instead:

$ dumpdb --load Employee.ice -o dump.xml db emp.db

If the option is specified, its expression is included in the generated descriptor as the value of the attribute in an --select <record> test <if>
descriptor.

dumpdb terminates immediately after generating the output file.

Executing a Descriptor File

Use the option when you are ready to execute a descriptor file. For example, we can execute the descriptor we generated in the previous section -f
using this command:

$ dumpdb -f dump.xml --load Employee.ice db emp.db

Examine the Catalog

The option displays the contents of the database environment's :-c catalog

$ dumpdb -c db

The output indicates whether each database in the environment is associated with an evictor or a map. For maps, the output includes the key and
value types.

If you specify the name of a database, only displays the type information for that database:dumpdb

$ dumpdb -c db emp.db

Using on an Open Environmentdumpdb
It is possible to use to migrate databases in an environment that is currently open by another process, but if you are not careful you can dumpdb
easily corrupt the environment and cause the other process to fail. To avoid such problems, you must configure both and the other process dumpdb
to set . This property has a default value of one, therefore you must explicitly set it to zero.Freeze.DbEnv. .DbPrivate=0env-name

If you run on an open environment but neglect to set , you can expect to terminate dumpdb Freeze.DbEnv. .DbPrivate=0env-name dumpdb
immediately with an error message stating that the database environment is locked. Before running on an open environment, we strongly dumpdb
recommend that you first verify that the other process was also configured with .Freeze.DbEnv. .DbPrivate=0env-name

See Also

Using the Slice Compilers
Freeze Catalogs

https://doc.zeroc.com/display/Ice35/Freeze+Catalogs
https://doc.zeroc.com/display/Ice35/Freeze+Properties#FreezeProperties-Freeze.DbEnv.env-name.DbPrivate
https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice35/Freeze+Catalogs

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Freeze Evictors
FreezeScript Descriptor Expression Language
Freeze Properties

https://doc.zeroc.com/display/Ice35/Freeze+Evictors
https://doc.zeroc.com/display/Ice35/FreezeScript+Descriptor+Expression+Language
https://doc.zeroc.com/display/Ice35/Freeze+Properties

	Using dumpdb

