
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Using Connections
Applications can gain access to an Ice object representing an established connection.

On this page:

The Connection Interface
Flushing Batch Requests for a Connection

The Endpoint Interface
Opaque Endpoints

Client-Side Connection Usage
Server-Side Connection Usage
Closing a Connection

Graceful Closure
Forceful Closure

The InterfaceConnection
The Slice definition of the interface is shown below:Connection

Slice

module Ice {
 local class ConnectionInfo {
 bool incoming;
 string adapterName;
 };

 local interface Connection {
 void close(bool force);
 Object* createProxy(Identity id);
 void setAdapter(ObjectAdapter adapter);
 ObjectAdapter getAdapter();
 Endpoint getEndpoint();
 void flushBatchRequests();
 string type();
 int timeout();
 string toString();
 ConnectionInfo getInfo();
 };

 local class IPConnectionInfo extends ConnectionInfo {
 string localAddress;
 int localPort;
 string remoteAddress;
 int remotePort;
 };

 local class TCPConnectionInfo extends IPConnectionInfo {};

 local class UDPConnectionInfo extends IPConnectionInfo {
 string mcastAddress;
 int mcastPort;
 };
};

module IceSSL {
 local class ConnectionInfo extends Ice::IPConnectionInfo {
 string cipher;
 Ice::StringSeq certs;
 };
};

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

As indicated in the Slice definition, a connection is a , similar to a communicator or an object adapter. A connection therefore is only local interface
usable within the process and cannot be accessed remotely.

The interface supports the following operations:Connection

void close(bool force)
Explicitly . The connection is closed gracefully if is false, otherwise the connection is closed forcefully.closes the connection force

Object* createProxy(Identity id)
Creates a special proxy that only uses this connection. This operation is primarily used for .bidirectional connections

void setAdapter(ObjectAdapter adapter)
Associates this connection with an object adapter to enable a .bidirectional connection

ObjectAdapter getAdapter()
Returns the object adapter associated with this connection, or nil if no association has been made.

Endpoint getEndpoint()
Returns an . objectEndpoint

void flushBatchRequests()
Flushes any pending for this connection.batch requests

string type()
Returns the connection type as a string, such as ."tcp"

int timeout()
Returns the value used when the connection was established.timeout

string toString()
Returns a readable description of the connection.

ConnectionInfo getInfo()
This operation returns a class defined as follows:ConnectionInfo

Slice

local class ConnectionInfo {
 bool incoming;
 string adapterName;
};

The member is true if the connection is an incoming connection and false, otherwise. If is true, incoming incoming adapterName
provides the name of the object adapter that accepted the connection. Note that the object returned by implements a more derived getInfo
interface, depending on the connection type. You can down-cast the returned class instance and access the connection-specific information
according to the type of the connection.

Flushing Batch Requests for a Connection

The operation blocks the calling thread until any batch requests that are queued for a connection have been successfully flushBatchRequests
written to the local transport. To avoid the risk of blocking, you can also invoke this operation asynchronously using the begin_flushBatchReques

 method (in those language mappings that support it).ts

Since batch requests are inherently oneway invocations, the method does not support a request callback. However, begin_flushBatchRequests
you can use the exception callback to handle any errors that might occur while flushing, and the sent callback to receive notification that the batch
request has been flushed successfully.

For example, the code below demonstrates how to flush batch requests asynchronously in C++:

https://doc.zeroc.com/display/Ice35/Local+Types
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/Connection+Timeouts

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

C++

class FlushCallback : public IceUtil::Shared
{
public:

 void exception(const Ice::Exception& ex)
 {
 cout << "Flush failed: " << ex << endl;
 }

 void sent(bool sentSynchronously)
 {
 cout << "Batch sent!" << endl;
 }
};
typedef IceUtil::Handle<FlushCallback> FlushCallbackPtr;

void flushConnection(const Ice::ConnectionPtr& conn)
{
 FlushCallbackPtr f = new FlushCallback;
 Ice::Callback_Connection_flushBatchRequestsPtr cb =
 Ice::newCallback_Connection_flushBatchRequests(
 f, &FlushCallback::exception, &FlushCallback::sent);
 conn->begin_flushBatchRequests(cb);
}

For more information on asynchronous invocations, please see the relevant language mapping chapter.

The InterfaceEndpoint
The operation returns an interface of type :Connection::getEndpoint Endpoint

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Slice

module Ice {
 const short TCPEndpointType = 1;
 const short UDPEndpointType = 3;

 local class EndpointInfo {
 int timeout;
 bool compress;
 short type();
 bool datagram();
 bool secure();
 };

 local interface Endpoint {
 EndpointInfo getInfo();
 string toString();
 };

 local class IPEndpointInfo extends EndpointInfo {
 string host;
 int port;
 };

 local class TCPEndpointInfo extends IPEndpointInfo {};

 local class UDPEndpointInfo extends IPEndpointInfo {
 byte protocolMajor;
 byte protocolMinor;
 byte encodingMajor;
 byte encodingMinor;
 string mcastInterface;
 int mcastTtl;
 };

 local class OpaqueEndpointInfo extends EndpointInfo {
 Ice::ByteSeq rawBytes;
 };
};

module IceSSL {
 const short EndpointType = 2;

 local class EndpointInfo extends Ice::IPEndpointInfo {};
};

The operation returns an instance. Note that the object returned by implements a more derived interface, getInfo EndpointInfo getInfo
depending on the endpoint type. You can down-cast the returned class instance and access the endpoint-specific information according to the type of
the endpoint, as returned by the operation.type

The member provides the timeout in milliseconds. The member is true if the endpoint uses (if available). The timeout compress compression data
 operation returns true if the endpoint is for a transport, and the operation returns true if the endpoint uses .gram datagram secure SSL

The derived classes provide further detail about the endpoint according to its type.

Opaque Endpoints

An application may receive a proxy that contains an endpoint whose type is unrecognized by the Ice run time. In this situation, Ice preserves the
endpoint in its encoded () form so that the proxy remains intact, but Ice ignores the endpoint for all connection-related activities. Preserving opaque
the endpoint allows an application to later forward that proxy with all of its original endpoints to a different program that might support the endpoint
type in question.

Although a connection will never return an opaque endpoint, it is possible for a program to encounter an opaque endpoint when iterating over the
endpoints returned by the .proxy method ice_getEndpoints

https://doc.zeroc.com/display/Ice35/Protocol+Compression
https://doc.zeroc.com/display/Ice35/Datagram+Invocations
https://doc.zeroc.com/display/Ice35/IceSSL
https://doc.zeroc.com/display/Ice35/Proxy+Methods

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

As a practical example, consider a program for which the plug-in is not configured. If this program receives a proxy containing an SSL IceSSL
endpoint, Ice treats it as an opaque endpoint such that calling on the endpoint object returns an instance of .getInfo OpaqueEndpointInfo

Note that the operation of the object returns the type of the endpoint. For example, the operation returns the type OpaqueEndpointInfo actual
value if the object encodes an SSL endpoint. As a result, your program cannot assume that an object whose type is can be 2 EndpointInfo 2
safely down-cast to ; if the IceSSL plug-in is not configured, such a down-cast will fail because the object is actually an IceSSL::EndpointInfo
instance of .OpaqueEndpointInfo

Client-Side Connection Usage
Clients obtain a connection by using one of the or . If the proxy does not yet proxy methods ice_getConnection ice_getCachedConnection
have a connection, the method immediately attempts to establish one. As a result, the caller must be prepared to handle ice_getConnection conn

 exceptions. Furthermore, if the proxy denotes a and collocation optimization is enabled, calling ection failure collocated object ice_getConnection
results in a .CollocationOptimizationException

If you wish to obtain the proxy's connection without the potential for triggering connection establishment, call ; this ice_getCachedConnection
method returns null if the proxy is not currently associated with a connection or if connection caching is disabled for the proxy.

As an example, the C++ code below illustrates how to obtain a connection from a proxy and print its type:

C++

Ice::ObjectPrx proxy = ...
try
{
 Ice::ConnectionPtr conn = proxy->ice_getConnection();
 cout << conn->type() << endl;
}
catch(const Ice::CollocationOptimizationException&)
{
 cout << "collocated" << endl;
}

Server-Side Connection Usage
Servers can access a connection via the member of the parameter passed to every operation. For collocated invocations, con Ice::Current con
has a nil value.

For example, this Java code shows how to invoke on the connection:toString

Java

public int add(int a, int b, Ice.Current curr)
{
 if (curr.con != null)
 {
 System.out.println("Request received on connection:\n" + curr.con.toString());
 }
 else
 {
 System.out.println("collocated invocation");
 }
 return a + b;
}

Although the mapping for the Slice operation results in a Java method named , the Ice run time implements to toString _toString toString
return the same value.

Closing a Connection

https://doc.zeroc.com/display/Ice35/IceSSL
https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/Connection+Establishment#ConnectionEstablishment-error
https://doc.zeroc.com/display/Ice35/Connection+Establishment#ConnectionEstablishment-error
https://doc.zeroc.com/display/Ice35/Location+Transparency
https://doc.zeroc.com/display/Ice35/The+Current+Object

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Applications should rarely need to close a connection explicitly, but those that do must be aware of its implications. Since there are two ways to close
a connection, we discuss them separately.

Graceful Closure

Passing an argument of to the operation initiates graceful connection closure, as discussed in . The operation false close Connection Closure
blocks until all pending outgoing requests on the connection have completed.

Forceful Closure

A forceful closure is initiated by passing an argument of to the operation, causing the peer to receive a .true close ConnectionLostException

A client must use caution when forcefully closing a connection. Any outgoing requests that are pending on the connection when is invoked will close
fail with a . Furthermore, requests that fail with this exception are not automatically retried.ForcedCloseConnectionException

In a server context, forceful closure can be useful as a defense against hostile clients.

The Ice run time interprets a to mean that it is safe to the request without violating at-most-once semantics. If CloseConnectionException retry
automatic retries are enabled, a client must only initiate a graceful close when it knows that there are no outgoing requests in progress on that
connection, or that any pending requests can be safely retried.

See Also

The Current Object
Automatic Retries
Connection Establishment
Connection Closure
Bidirectional Connections
IceSSL

https://doc.zeroc.com/display/Ice35/Connection+Closure
https://doc.zeroc.com/display/Ice35/Automatic+Retries
https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/Automatic+Retries
https://doc.zeroc.com/display/Ice35/Connection+Establishment
https://doc.zeroc.com/display/Ice35/Connection+Closure
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/IceSSL

	Using Connections

