Ice 3.5.1 Documentation

Instrumentation Facility

The Ice run time can be instrumented using observer interfaces that monitor many aspects of the run time's internal objects and activities, including

connections, threads, servant dispatching, proxy invocations, endpoint lookups and connection establishment. We refer to these internal objects and
activities as "instrumented objects" in the discussion below. The application is responsible for implementing the instrumentation observer interfaces.
Note however that an implementation of these interfaces is provided by the Metrics Facet, so most applications do not need to implement them and

can instead collect metrics through the Met r i csAdni n facet. The definition of the instrumentation interfaces can be found in the | ce

/1 nstrunmentation.ice Slice file.

The Ice run time uses the | ce: : I nstrument ati on: : Cormuni cat or Gbser ver interface to obtain observers for instrumented objects created by
the run time:

Slice

nmodul e Ice {
nodul e I nstrunentation {
local interface Communi cat or Gbserver {
oserver get Connecti onEst abl i shnent Cbserver (Endpoi nt endpt, string connector);
Ohserver get Endpoi nt LookupGObser ver (Endpoi nt endpt) ;
Connecti onObserver get Connecti onCbserver (Connectionlnfo ¢, Endpoint e,
ConnectionState s, Connecti onCbserver 0);
Thr eadObserver get ThreadObserver(string parent, string id, ThreadState s,
Thr eadCbserver 0);
I nvocati onObserver getlnvocati onCbserver(Qbject* prx, string operation, Context ctx);
Di spat chCbserver get Di spat chQobserver (Current c);
voi d set Qbserver Updat er (Cbser ver Updat er updater);
b
b
I ocal interface Communicator {
Ice::Instrunentation:: Comuni cat or Cbserver get Cbserver();
/1
i
b

The Ice run time calls the appropriate get . . . Gbser ver operation each time a new instrumented object is created. The implementation of these
methods should return an observer, or nil if the implementation does not want to monitor the instrumented object. This observer is associated with the
instrumented object and receives notifications of any changes to its attributes or state. All observer interfaces derive from the | ce: :

I nstrument ation: : Gobserver base interface:

Slice

local interface Qobserver {
void attach();
voi d detach();
void failed(string exceptionNane);

}s

The at t ach operation is called upon association of the observer with the new instrumented object. The det ach operation is called when the object
is destroyed. The f ai | ed operation is called to report any failures that might occur during the lifetime of the instrumented object. Observer
specializations provide additional operations for monitoring other attributes. For example, here isthe | ce: : I nstrunment ati on: :

Connect i onCbser ver interface:

Slice

I ocal interface ConnectionCbserver extends Cbserver {
voi d sentBytes(int num;
voi d recei vedBytes(int nun;

1

The sent Byt es and r ecei vedByt es methods are called by the Ice connection when new bytes are received or sent over the connection.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/The+Metrics+Facet

Ice 3.5.1 Documentation

Shown below is an implementation of the communicator and connection observer interfaces to record sent and received bytes on a per-connection
basis. The observer dumps how many bytes were received and sent for the connection when it is detached:

C++

cl ass ConnectionCbserverlnmpl : public Ice::lnstrumentation:: ConnectionCbserver {
public:
Connecti onCbserver | npl (const |ce:: Connectionl nfoPtr& connl nf o)
info(connlnfo), sentBytes(0), receivedBytes(0)
{
}

void attach() {}

voi d detach()

{
cerr << info->renpteHost << ":" << info->renpbtePort << ": sent bytes ="
<< sentBytes << ", received bytes = " << receivedBytes << endl;
}
void sentBytes(int num
{
sent Bytes += num
}
voi d recei vedBytes(int num
{
recei vedBytes += num
}
void failed(const std::string&)
{
}
private:

I ce:: ConnectionlnfoPtr info;
| ong sent Byt es;
I ong recei vedByt es;

i
cl ass Conmuni cat or Cbserverlnpl : public Ice::Instrumentation:: Comruni cat or Gbserver {
public:
Ice::lnstrunentation:: Connecti onObserverPtr
get Connecti onCbserver (const |ce:: ConnectionlnfoPtr& c, const |ce::EndpointPtré& e,
lce::lInstrunentation:: ConnectionState s,
const lce::lnstrunentation:: Connecti onCbserverPtr& previous)
{
return new Connecti onCbserverlnpl (c);
}
I

For brevity we have omitted the implementation of the other get . . . Cbser ver methods; they all return 0 as we are only interested in instrumenting
connections.

To register your implementation, you must passitinan | ni ti al i zat i onDat a parameter when you initialize a communicator:

C++

lce::InitializationData id;
i d. observer = new Communi cat or Cbserver | npl ();
Ice::ComunicatorPtr ic = Ice::initialize(id);

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Communicator+Initialization

Ice 3.5.1 Documentation

You can install a Conmruni cat or Gbser ver object on either the client or the server side (or both). Here is some example output produced by
installing our Conmruni cat or Cbser ver and Connect i onCbser ver object implementations in a simple server:

127.0.0.1:3487: sent bytes = 14, received bytes = 32
127.0.0. 1: 3487: sent bytes 33, received bytes 14
127.0.0. 1: 3490: sent bytes = 14, received bytes = 14

In addition to the operations for retrieving observers, the Conmmuni cat or Obser ver interface also defines a set Cbser ver Updat er operation that is
called by the Ice run time on initialization to provide an updater object to the Conmuni cat or Cbser ver implementation. This updater object can be
used to "refresh" some of the created observers. The updater object provided by the Ice run time implements the following interface:

Slice

local interface QbserverUpdater {
voi d updat eConnecti onQbservers();
voi d updat eThr eadObservers();

3

The Conmuni cat or Gbser ver implementation can call these operations to update the observers associated with Ice connections or threads. When
one of these operations is called, the Ice run time calls the matching get . . . Gbser ver method on the Conmuni cat or Cbser ver interface for each
of the instrumented objects. For example, if you call updat eConnect i onCbser ver s, your implementation of get Connect i onCbser ver will be
called again for each Ice connection in the communicator. The pr evi ous parameter to get Connect i onCbser ver represents the observer that is
currently associated with the connection.

This mechanism can be used to re-configure the observers associated with instrumented objects. For instance, the application might not wish to

instrument connections all the time but only when needed. It can use the observer updater to enable or disable the instrumentation. Here is the
example above modified to provide this functionality:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

C++

cl ass Conmuni cat or Cbserverlnpl : public Ice::Instrunmentation:: Communi cat or Cbser ver,
private lceUtil::Mitex {

public:

I ce::Instrunentation:: Connecti onCbserverPtr

get Connecti onCbserver (const Ice:: ConnectionlnfoPtr& c, const |ce::EndpointPtré& e,
lce::Instrunmentation:: ConnectionState s,
const lce::Instrunentation:: Connecti onQbserverPtr& previous)

{
Lock sync(*this);
return enabl ed ? new Connecti onCbserverlnpl(c) : O;
}
voi d set Enabl ed(bool enabl ed)
{
{
Lock sync(*this);
i f(this->enabl ed == enabl ed)
return;
t hi s->enabl ed = enabl ed,
}
updat er - >updat eConnecti ons();
}
voi d set Qbserver Updat er (const |ce::Instrunmentation:: CbserverUpdaterPtr& updater)
{
t hi s->updater = updater;
}

const lce::lInstrunentation:: CbserverUpdaterPtr updater;
bool enabl ed;

1

As you can see in the example above, special care needs to be taken with respect to synchronization. The Ice run time can call observers with Ice
internal locks held to guarantee consistency of the information passed to the get . . . Cbser ver methods. It is therefore important that the
implementation of your observers performs quickly and does not create deadlocks. Your observers should not make remote invocations or call Ice
APIs that require acquiring locks on instrumented objects.

See Also

® Communicator Initialization
® The Metrics Facet

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/The+Metrics+Facet

	Instrumentation Facility

