
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

.NET Compact Framework Support
Ice for .NET includes support for the .NET Compact Framework (.NET CF).

On this page:

Using Ice for .NET CF
Limitations of Ice for .NET CF
Managing Factory Assemblies in Ice for .NET CF

Using Ice for .NET CF
There are several API differences between .NET and .NET CF that impact the Ice run time, therefore Ice for .NET must be re-compiled to target .NET
CF. The Ice installer for Windows includes the .NET CF version of the Ice run time in , and the \bin\cf\Ice.dllinstall-dir Ice Visual Studio

 automatically uses this DLL for Smart Device projects. To build Ice for .NET CF in a source distribution, enable in Add-in COMPACT cs\config\Make
..rules.mak.cs

Limitations of Ice for .NET CF
The following features are supported in Ice for .NET CF:not

Protocol compression
Signal processing in the classIce.Application
IceSSL
ICE_CONFIG environment variable
Dynamic loading of Slice checksums
Ice.TCP.SndSize and propertiesIce.TCP.RcvSize
Automatic discovery of dependent assemblies containing Slice-generated classes and exceptions

As we discuss in the next section, the last limitation is the most significant.

Managing Factory Assemblies in Ice for .NET CF
When receiving a Slice user exception or a concrete Slice object-by-value, the Ice run time must be able to dynamically translate the encoded Slice
type ID (such as) into a .NET class name (such as), dynamically locate that class, and instantiate it. ::MyModule::MyType MyModule.MyType
This is convenient for .NET applications because it requires no additional user configuration; at startup, the Ice for .NET run time recursively loads all
dependent assemblies used by the program to ensure that any generated classes are available if necessary.

The Compact Framework does not allow a program to discover its dependent assemblies, so this strategy cannot work. Consequently, Ice for .NET
CF adds the new configuration property so that you can explicitly list any assemblies that contain the generated code for Ice.FactoryAssemblies
user exceptions or concrete classes. When searching for a class, Ice for .NET CF first checks in the assemblies specified by this property. If the type
is not found, Ice automatically looks in the standard Ice assemblies (, , , , , and).Ice Glacier2 IceBox IceGrid IcePatch2 IceStorm

Note that the program itself is also considered an assembly. If you compiled the main program directly with Slice-generated code, your Ice.
 property must include the program itself if the generated code includes user exceptions or concrete classes. For simple build FactoryAssemblies

scenarios in which all generated code is compiled directly into the executable, the following configuration setting is sufficient:

Ice.FactoryAssemblies=client

This example assumes the executable is named . On the other hand, if Slice-generated code is also compiled into a dependent client.exe
assembly, your configuration might look like this instead:

Ice.FactoryAssemblies=client MyOtherAssembly

Failing to define can cause the Ice run time in the receiver to raise or Ice.FactoryAssemblies NoObjectFactoryException UnmarshalOutO
. If you are experiencing either of these exceptions, verify that your assemblies are configured correctly.fBoundsException

See Also

Visual Studio Add-in
Ice.FactoryAssemblies

https://doc.zeroc.com/display/Ice34/Visual+Studio+Add-in
https://doc.zeroc.com/display/Ice34/Visual+Studio+Add-in
https://doc.zeroc.com/display/Ice34/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.FactoryAssemblies
https://doc.zeroc.com/display/Ice34/Visual+Studio+Add-in
https://doc.zeroc.com/display/Ice34/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.FactoryAssemblies

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

	.NET Compact Framework Support

