
Building Ice Touch from Source
This page describes the Ice Touch source distribution, including information about compiler requirements, third-party dependencies, and instructions for
building and testing the distribution. If you prefer, you can download a that contains pre-compiled libraries, executables, and binary package
everything else necessary to build Ice Touch applications on OS X.

On this page:

Build Requirements
Third-party Libraries
Xcode Plug-in

Compiling and Testing Ice Touch
Building the Slice Compilers
Building the C++ SDKs
Building the Objective-C SDKs

Installing Ice Touch

Build Requirements
Ice Touch was extensively tested using the operating systems and compiler versions listed on our .platforms page

Third-party Libraries

Ice Touch depends on 2.7.2 (with patches). Binary and source distributions of mcpp are available on our .mcpp download page

Xcode Plug-in

Our is required for building the Cocoa and iPhone sample projects included in this distribution. We strongly recommended that you develop Xcode Plug-in
Ice for C++ and Ice Touch applications with Xcode, as it greatly simplifies the build process.

Back to Top ^

Compiling and Testing Ice Touch
Unpack the Ice Touch source archive. The source files are contained in the subdirectory.IceTouch-1.3.3

Building the Slice Compilers

The mandatory first step is to build the Slice-to-C++ and Slice-to-Objective-C compilers (and , respectively).slice2cpp slice2objc

Change the working directory to :IceTouch-1.3.3/cpp

$ cd IceTouch-1.3.3/cpp

Set to point to the installation directory of your MCPP binaries, for example:MCPP_HOME

$ export MCPP_HOME=$HOME/IceTouch-1.3.3-ThirdParty

Set to to create an optimized build:OPTIMIZE_SPEED yes

$ export OPTIMIZE_SPEED=yes

Then run make to build the compilers:

$ make

Back to Top ^

Building the C++ SDKs

You can build a C++ SDK for each of three different targets: Cocoa, iPhone, and iPhone Simulator. Change to the directory and IceTouch-1.3.3/cpp
run one of the following commands to build an SDK:

$ cd IceTouch-1.3.3/cpp
$ make COMPILE_FOR_COCOA=yes
or
$ make COMPILE_FOR_IPHONE=yes
or

 $ make COMPILE_FOR_IPHONE_SIMULATOR=yes

http://www.zeroc.com/icetouch/download.html
http://www.zeroc.com/icetouch/platforms.html
http://mcpp.sourceforge.net/
http://www.zeroc.com/icetouch/download.html
https://doc.zeroc.com/display/IceTouch/Building+the+Xcode+Plug-in+from+Source

This will build static libraries and a test suite for the specified target. The build configuration options can be found in .config/Make.rules

If you built for iPhone or the iPhone simulator, you should now use Xcode to build the demos and test suite GUI located in the following subdirectories:

demo/iPhone/hello
test/iPhone/container

After a successful build, you can run the test suite. For a Cocoa build, run:

$ python allTests.py

If everything works, you should see lots of "ok" messages. In case of a failure, the tests abort with "failed".

For the iPhone or iPhone simulator, the test suite runs within an iPhone application named "Test Suite". You can run it from the Xcode project located in
the directory. Note that the C++ tests must be run from Xcode; they won't run if you launch the Test Suite application cpp/test/iPhone/container
from the device directly.

The architecture used to build the "Test Suite" application or the hello demo is specified with the "Architectures" build setting in the Xcode project. It must
match the architecture used to build Ice Touch.

To build for a different target, you first need to clean the current build using the command. For example, if you built for Cocoa, runclean

$ make COMPILE_FOR_COCOA=yes clean

You can now start a new build for the desired target.

Back to Top ^

Building the Objective-C SDKs

You can build an Objective-C SDK for each of four different targets: OS X (command line), Cocoa, iPhone, and iPhone Simulator. Change to the IceTouch
 directory and run one of the following commands to build an SDK:-1.3.3/objc

$ cd IceTouch-1.3.3/objc
$ make
or
$ make COMPILE_FOR_COCOA=yes
or
$ make COMPILE_FOR_IPHONE=yes
or

 $ make COMPILE_FOR_IPHONE_SIMULATOR=yes

The first command (without any arguments) builds the OS X SDK with dynamic libraries, the test suite, and the demos. The remaining commanmake make
ds generate static libraries and build the test suite. The build configuration options can be found in .config/Make.rules

When building for iPhone in debug mode, make will by default build only for . You can specify different architecture(s) with armv7 CXXARCHFLAGS
, for example:

 " $ make COMPILE_FOR_IPHONE=yes CXXARCHFLAGS="-arch arm64

Ice Touch supports , and armv7 armv7s arm64.

OS X and iOS provide two C++ run time libraries, the older and newer . By default, Xcode 6 links with when libstd++ libc++ libc++
targeting OS X 10.9 or iOS >= 7, and with when targeting earlier versions.libstd++

The Ice Touch build system targets iOS 5.1.1 and OS X 10.7, and as a result creates libraries linked with . If you want to create libstd++
libraries linked with , set to , for example:libc++ CPP11 yes

 " CPP11=yes$ make COMPILE_FOR_IPHONE=yes CXXARCHFLAGS="-arch arm64

The resulting libraries will carry a suffix, such as or -libc++ libIceCpp-libc++.a libIceGridCpp-libc++.a

These libraries can be used by C++ applications that use C++11 features (), and also by C++ applications that do not -libc++ --std=c++11
(no).--std=c++11

The container project has two targets:

container, for default builds linked with libstdc++
container c++11, for builds linked with CPP11=yes libc++

If you built for Cocoa, you should now use Xcode to build the demos located in the following subdirectories:

demo/Cocoa/chat
demo/Cocoa/library

If you are building for iPhone or the iPhone simulator, you should now use Xcode to build the demos and test suite GUI located in the following
subdirectories:

demo/iPhone/chat
demo/iPhone/library
demo/iPhone/hello
demo/iPhone/router
demo/iPhone/voip
test/iPhone/container

To compile the demos, you can also open the Xcode workspace . The workspace includes the Cocoa IceTouch-1.3.3/demos.xcworkspace
and iPhone demo projects.

After a successful build, you can run the test suite. For an OS X or Cocoa build, run:

$ python allTests.py

If everything works, you should see lots of "ok" messages. In case of a failure, the tests abort with "failed".

For the iPhone or iPhone simulator, the test suite runs within an iPhone application named "Test Suite". You can run it from the Xcode project located in
the directory.test/iPhone/container

Back to Top ^

Installing Ice Touch
For the OS X build, simply run to install Ice Touch in the directories specified by the variables in and make install prefix cpp/config/Make.rules

.objc/config/Make.rules

For OS X builds of Ice Touch, the install name of each shared library is prefixed with . Link your executables with @rpath -Wl,-rpath,/Library
 to allow the dynamic linker to locate the libraries in the Ice Touch installation directory./Developer/IceTouch-1.3/lib

If you choose not to embed a runpath into executables at build time, you will need to add the directory to /Library/Developer/IceTouch-1.3/lib
your .DYLD_LIBRARY_PATH

Back to Top ^

When building for iPhone in debug mode, make will by default build only for . You can specify different architecture(s) with armv7 CXXARCHFLAGS
, for example:

" $ make COMPILE_FOR_IPHONE=yes CXXARCHFLAGS="-arch arm64

Ice Touch supports , and armv7 armv7s arm64.

The Ice Touch Objective-C SDK relies on C++ code. OS X and iOS provide two C++ run time libraries, the older and newer .libstd++ libc++
By default, Xcode 6 links with when targeting OS X 10.9 or iOS >= 7, and with when targeting earlier versions.libc++ libstd++

The Ice Touch build system targets iOS 5.1.1 and OS X 10.7, and as a result creates libraries linked with . If you want to create libstd++
libraries linked with , set to , for example:libc++ CPP11 yes

" CPP11=yes$ make COMPILE_FOR_IPHONE=yes CXXARCHFLAGS="-arch arm64

The resulting libraries will carry a suffix, such as or -libc++ libIceObjC-libc++.a libIceGridObjC-libc++.a

Make sure you build the appropriate SDK before opening the corresponding demo or test projects in Xcode.

	Building Ice Touch from Source

