
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Objective-C Mapping for Structures
On this page:

Basic Objective-C Mapping for Structures
Mapping for Data Members in Objective-C
Creating and Initializing Structures in Objective-C
Copying Structures in Objective-C
Deallocating Structures in Objective-C
Structure Comparison and Hashing in Objective-C

Basic Objective-C Mapping for Structures
A Slice  maps to an Objective-C class.structure

For each Slice data member, the generated Objective-C class has a corresponding property. For example, here is our  structure once Employee
more:

Slice

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Slice-to-Objective-C compiler generates the following definition for this structure:

Objective-C

@interface EXEmployee : NSObject <NSCopying>
{
    @private
        ICELong number;
        NSString *firstName;
        NSString *lastName;
}

@property(nonatomic, assign) ICELong number;
@property(nonatomic, retain) NSString *firstName;
@property(nonatomic, retain) NSString *lastName;

-(id) init:(ICELong)number firstName:(NSString *)firstName
                           lastName:(NSString *)lastName;
+(id) employee:(ICELong)number firstName:(NSString *)firstName
                               lastName:(NSString *)lastName;
+(id) employee;
// This class also overrides copyWithZone,
// hash, isequal, and dealloc.
@end

Mapping for Data Members in Objective-C
For each data member in the Slice definition, the Objective-C class contains a corresponding private instance variable of the same name, as well as 
a property definition that allows you to set and get the value of the corresponding instance variable. For example, given an instance of , EXEmployee
you can write the following:

https://doc.zeroc.com/display/Ice35/Structures
https://doc.zeroc.com/display/Ice35/Dictionaries


Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Objective-C

ICELong number;
EXemployee *e = ...;
[e setNumber:99];
number = [e number];

// Or, more concisely with dot notation:

e.number = 99;
number = e.number;

Properties that represent data members always use the  property attribute. This avoids the overhead of locking each data member during nonatomic
access. The second property attribute is  for integral and floating-point types and  for all other types (such as strings, structures, and assign retain
so on.)

Note that, for types that have immutable and mutable variants (strings, sequences, and dictionaries), the corresponding data member uses the 
immutable variant. This allows the application to assign an immutable object to the data member. You can safely cast the data member to the 
mutable variant if the structure was created by the Ice run time: the unmarshaling code always creates and assigns the mutable version to the data 
member.

Creating and Initializing Structures in Objective-C
Structures provide the typical (inherited)  method:init

Objective-C

EXEmployee *e = [[EXEmployee alloc] init];
// ...
[e release];

As usual,  initializes the instance variables of the structure with zero-filled memory. You can also declare default values in your , init Slice definition
in which case this  method initializes each data member withinit
its declared value.

In addition, a structure provides a second  method that accepts one parameter for each data member of the structure:init

Objective-C

-(id) init:(ICELong)number firstName:(NSString *)firstName
                           lastName:(NSString *)lastName;

Note that the first parameter is always unlabeled; the second and subsequent parameters have a label that is the same as the name of the 
corresponding Slice data member. The additional  method allows you to instantiate a structure and initialize its data members in a single init
statement:

Objective-C

EXEmployee *e = [[EXEmployee alloc] init:99 firstName:@"Brad" lastName:@"Cox"];
// ...
[e release];

init applies the memory management policy of the corresponding properties, that is, it calls  on the  and  arguments.retain firstName lastName

Each structure also provides two convenience constructors that mirror the  methods: a parameter-less convenience constructor and one that init
has a parameter for each Slice data member:

https://doc.zeroc.com/display/Ice35/Structures


Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Objective-C

+(id) employee;
+(id) employee:(ICELong)number firstName:(NSString *)firstName
                               lastName:(NSString *)lastName;

The convenience constructors have the same name as the mapped Slice structure (without the module prefix). As usual, they allocate an instance, 
perform the same initialization actions as the corresponding  methods, and call  on the return value:init autorelease

Objective-C

EXEmployee *e = [EXEmployee employee:99 firstName:@"Brad" lastName:@"Cox"];

// No need to call [e release] here.

Copying Structures in Objective-C
Structures implement the  protocol. Structures are copied by assigning instance variables of value type and calling  on each NSCopying retain
instance variable of non-value type. In other words, the copy is shallow:

Objective-C

EXEmployee *e = [EXEmployee employee:99 firstName:@"Brad" lastName:@"Cox"];
EXEmployee *e2 = [e copy];
NSAssert(e.number == e2.number);
NSAssert([e.firstName == e2.firstName]); // Same instance
// ...
[e2 release];

Note that, if you assign an  to a structure member and use the structure as a dictionary key, you must not modify the string inside NSMutableString
the structure without copying it because doing so will corrupt the dictionary.

Deallocating Structures in Objective-C
Each structure implements a  method that calls  on each instance variable with a  property attribute. This means that dealloc release retain
structures take care of the memory management of their contents: releasing a structure automatically releases all its instance variables.

Structure Comparison and Hashing in Objective-C
Structures implement , so you can compare them for equality. Two structures are equal if all their instance variables are equal. For value isEqual
types, equality is determined by the  operator; for non-value types other than classes, equality is determined by the corresponding instance ==
variable's  method.  are compared by comparing their identity: two class members are equal if they both point at the same instance.isEqual Classes

The  method returns a hash value is that is computed from the hash value of all of the structure's instance variables.hash

See Also

Structures
Dictionaries
Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces

https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Classes
https://doc.zeroc.com/display/Ice35/Structures
https://doc.zeroc.com/display/Ice35/Dictionaries
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Modules
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Constants
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Exceptions
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Interfaces


Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Objective-C Mapping for Classes

https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Classes

	Objective-C Mapping for Structures

