
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Basic Types
On this page:

Built-In Basic Types
Integer Types
Floating-Point Types
Strings
Booleans
Bytes

Built-In Basic Types
Slice provides a number of built-in basic types, as shown in this table:

Type Range of Mapped Type Size of Mapped
Type

bool or false true 1bit

byte -128-127 or 0-255 a 8 bits

short -2 to 2 -115 15 16 bits

int -2 to 2 -131 31 32 bits

long -2 to 2 -163 63 64 bits

float IEEE single-precision 32 bits

double IEEE double-precision 64 bits

string All Unicode characters,
excluding
the character with all bits zero.

Variable-length

a The range depends on whether maps to a signed or an unsigned type.byte

All the basic types (except) are subject to changes in representation as they are transmitted between clients and servers. For example, a byte long
value is byte-swapped when sent from a little-endian to a big-endian machine. Similarly, strings undergo translation in representation if they are sent,
for example, from an EBCDIC to an ASCII implementation, and the characters of a string may also change in size. (Not all architectures use 8-bit
characters). However, these changes are transparent to the programmer and do exactly what is required.

Integer Types
Slice provides integer types , , and , with 16-bit, 32-bit, and 64-bit ranges, respectively. Note that, on some architectures, any of short int long
these types may be mapped to a native type that is wider. Also note that no unsigned types are provided. (This choice was made because unsigned
types are difficult to map into languages without native unsigned types, such as Java. In addition, the unsigned integers add little value to a language.
(See for a good treatment of the topic.)[1]

Floating-Point Types
These types follow the IEEE specification for single- and double-precision floating-point representation . If an implementation cannot support IEEE [2]
format floating-point values, the Ice run time converts values into the native floating-point representation (possibly at a loss of precision or even
magnitude, depending on the capabilities of the native floating-point format).

Strings
Slice strings use the Unicode character set. The only character that cannot appear inside a string is the zero character.

This decision was made as a concession to C++, with which it becomes impossibly difficult to manipulate strings with embedded zero
characters using standard library routines, such as or .strlen strcat

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.

The Slice data model does not have the concept of a null string (in the sense of a C++ null pointer). This decision was made because null strings are
difficult to map to languages without direct support for this concept (such as Python). Do not design interfaces that depend on a null string to indicate
"not there" semantics. If you need the notion of an optional string, use a , a of strings, or use an empty string to represent the idea of a class sequence
null string. (Of course, the latter assumes that the empty string is not otherwise used as a legitimate string value by your application.)

Booleans
Boolean values can have only the values and . Language mappings use the corresponding native boolean type if one is available.false true

Bytes
The Slice type is an (at least) 8-bit type that is guaranteed not to undergo any changes in representation as it is transmitted between address byte
spaces. This guarantee permits exchange of binary data such that it is not tampered with in transit. All other Slice types are subject to changes in
representation during transmission.

See Also

Sequences
Classes

References

Lakos, J. 1996. . Reading, MA: Addison-Wesley.Large-Scale C++ Software Design
Institute of Electrical and Electronics Engineers. 1985. . Piscataway, NJ: IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
Institute of Electrical and Electronic Engineers.

https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Sequences
https://doc.zeroc.com/display/Ice34/Sequences
https://doc.zeroc.com/display/Ice34/Classes
http://amzn.com/0201633620

	Basic Types

