Ice 3.4.2 Documentation

Server-Side Java Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing member functions in a servant class, you provide
the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:

® Skeleton Classes in Java
® Servant Classes in Java
© Normal and idempotent Operations in Java

Skeleton Classes in Java

On the client side, interfaces map to proxy classes. On the server side, interfaces map to skeleton classes. A skeleton is a class that has a pure
virtual member function for each operation on the corresponding interface. For example, consider our Slice definition for the Node interface:

Slice
nmodul e Fil esystem {
interface Node {
i denpotent string nane();
/1
I

The Slice compiler generates the following definition for this interface:

Java

package Fil esystem

public interface _NodeOperations

{
String name(lce.Current current);
}
public interface _NodeOperati onsNC
{
String nane();
}

public interface Node extends I|ce. Object,
_NodeQper at i ons,
_NodeQper ati onsNC {}

public abstract class _NodeDi sp extends |ce. Cbjectl npl
i mpl ements Node

{
}

/1 Mapping-internal code here...

The important points to note here are:

® As for the client side, Slice modules are mapped to Java packages with the same name, so the skeleton class definitions are part of the Fi |
esyst empackage.

® For each Slice interface <i nt er f ace- name>, the compiler generates Java interfaces _<i nt er f ace- nane>Qper ati ons and _<interfa

ce- nane>0Oper at i onsNC (_NodeQOper at i ons and _NodeQper at i onsNC in this example). These interfaces contain a method for each
operation in the Slice interface. (You can ignore the | ce. Cur r ent parameter for now.)

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice34/The+Current+Object

Ice 3.4.2 Documentation

® For each Slice interface <i nt er f ace- name>, the compiler generates a Java interface <i nt er f ace- nanme> (Node in this example). That
interface extends | ce. Obj ect and the two operations interfaces.

® For each Slice interface <i nt er f ace- name>, the compiler generates an abstract class _<i nt er f ace- name>Di sp (_NodeDi sp in this
example). This abstract class is the actual skeleton class; it is the base class from which you derive your servant class.

Servant Classes in Java

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class. For
example, to create a servant for the Node interface, you could write:

Java
package Fil esystem
public final class Nodel extends _NodeDi sp {

public Nodel (String nane)

{
_nhane = nane;
}
public String name(lce.Current current)
{
return _nane;
}

private String _naneg;

By convention, servant classes have the name of their interface with an | -suffix, so the servant class for the Node interface is called Nodel . (This is
a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.) Note that Nodel extends _
NodeDi sp, that is, it derives from its skeleton class.

As far as Ice is concerned, the Nodel class must implement only a single method: the name method that it inherits from its skeleton. This makes the
servant class a concrete class that can be instantiated. You can add other member functions and data members as you see fit to support your
implementation. For example, in the preceding definition, we added a _name member and a constructor. (Obviously, the constructor initializes the _na

me member and the nane function returns its value.)

Normal and i denpot ent Operations in Java

Whether an operation is an ordinary operation or an i denpot ent operation has no influence on the way the operation is mapped. To illustrate this,
consider the following interface:

Slice

interface Exanple {
voi d normal Op();
i denpotent void i denmpot ent Op() ;
i denpotent string readonl yOp();
b

The operations class for this interface looks like this:

Java

public interface _Exanpl eOperations

{

voi d normal Op(lce.Current current);
voi d i denpotent Op(lce. Current current);

Copyright © 2017, ZeroC, Inc.



Ice 3.4.2 Documentation

String readonl yOp(lce.Current current);

Note that the signatures of the member functions are unaffected by the i denpot ent qualifier.

See Also

Slice for a Simple File System
Java Mapping for Interfaces
Parameter Passing in Java
Raising Exceptions in Java
Tie Classes in Java

The Current Object

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice34/Parameter+Passing+in+Java
https://doc.zeroc.com/display/Ice34/Raising+Exceptions+in+Java
https://doc.zeroc.com/display/Ice34/Tie+Classes+in+Java
https://doc.zeroc.com/display/Ice34/The+Current+Object

	Server-Side Java Mapping for Interfaces

