
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

The C++ Cache Template
This class allows you to efficiently maintain a cache that is backed by secondary storage, such as a Berkeley DB database, without holding a lock on
the entire cache while values are being loaded from the database. If you want to create for servants that store their state in a database, the evictors C

 class can simplify your evictor implementation considerably.ache

The class has the following interface:Cache

C++

template<typename Key, typename Value>
class Cache {
public:
 typedef typename std::map</* ... */, /* ... */>::iterator Position;

 bool pin(const Key& k, const Handle<Value>& v);
 Handle<Value> pin(const Key& k);
 void unpin(Position p);

 Handle<Value> putIfAbsent(const Key& k, const Handle<Value>& v);

 Handle<Value> getIfPinned(const Key&, bool = false) const;

 void clear();
 size_t size() const;

protected:
 virtual Handle<Value> load(const Key& k) = 0;
 virtual void pinned(const Handle<Value>& v, Position p);

 virtual ~Cache();
};

Note that is an abstract base class — you must derive a concrete implementation from and provide an implementation of the Cache Cache load
and, optionally, of the member function.pinned

Internally, a maintains a map of name-value pairs. The key and value type of the map are supplied by the and template Cache Key Value
arguments, respectively. The implementation of takes care of maintaining the map; in particular, it ensures that concurrent lookups by callers Cache
are possible without blocking even if some of the callers are currently loading values from the backing store. In turn, this is useful for evictor
implementations, such as the Freeze . The class does not limit the number of entries in the cache — it is the job of background save evictor Cache
the evictor implementation to limit the map size by calling on elements of the map that it wants to evict.unpin

Your concrete implementation class must implement the function, whose job it is to load the value for the key from the backing store and to load k
return a handle to that value. Note that returns a value of type , that is, the value must be heap-allocated and support the load IceUtil::Handle
usual reference-counting functions for smart pointers. (The easiest way to achieve this is to derive the value from .)IceUtil::Shared

If cannot locate a record for the given key because no such record exists, it must return a null handle. If fails for some other reason, it can load load
throw an exception, which is propagated back to the application code.

Your concrete implementation class typically will also override the function (unless you want to have a cache that does not limit the number pinned
of entries; the provided default implementation of is a no-op). The implementation calls whenever it has added a value to the pinned Cache pinned
map as a result of a call to ; the function is therefore a callback that allows the derived class to find out when a value has been added to pin pinned
the cache and informs the derived class of the value and its position in the cache.

The parameter is a into the cache's internal map that records the position of the corresponding map entry. (Note that Position std::iterator
the element type of map is opaque, so you should not rely on knowledge of the cache's internal key and value types.) Your implementation of pinned
must remember the position of the entry because that position is necessary to remove the corresponding entry from the cache again.

The public member functions of behave as follows:Cache

bool pin(const Key& k, const Handle<Value>& v);

You may also want to examine the implementation of the in the source distribution; it uses Freeze background save evictor IceUtil::
 for its implementation.Cache

https://doc.zeroc.com/display/Ice34/Servant+Evictors
https://doc.zeroc.com/display/Ice34/Background+Save+Evictor
https://doc.zeroc.com/pages/viewpage.action?pageId=5047934
https://doc.zeroc.com/pages/viewpage.action?pageId=5047939
https://doc.zeroc.com/display/Ice34/Background+Save+Evictor

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

To add a key-value pair to the cache, your evictor can call . The return value is true if the key and value were added; a false return value pin
indicates that the map already contained an entry with the given key and the original value for that key is unchanged.

pin calls if it adds an entry.pinned

This version of does call to retrieve the entry from backing store if it is not yet in the cache. This is useful when you add a newly-pin not load
created object to the cache.

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten by
another thread, until that entry is unpinned by a call to .unpin

Handle<Value> pin(const Key& k);

A second version of looks for the entry with the given key in the cache. If the entry is already in the cache, returns the entry's value. If no pin pin
entry with the given key is in the cache, calls to retrieve the corresponding entry. If returns an entry, adds it to the cache and pin load load pin
returns the entry's value. If the entry cannot be retrieved from the backing store, returns null.pin

pin calls if it adds an entry.pinned

The function is thread-safe, that is, it calls only once all other threads have unpinned the entry.load

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten by
another thread, until that entry is unpinned by a call to .unpin

Handle<Value> putIfAbsent(const Key& k, const Handle<Value>& v);

This function adds a key-value pair to the cache and returns a smart pointer to the value. If the map already contains an entry with the given key, that
entry's value remains unchanged and returns its value. If no entry with the given key is in the cache, calls to putIfAbsent putIfAbsent load
retrieve the corresponding entry. If returns an entry, adds it to the cache and returns the entry's value. If the entry cannot be load putIfAbsent
retrieved from the backing store, returns null.putIfAbsent

putIfAbsent calls if it adds an entry.pinned

The function is thread-safe, that is, it calls only once all other threads have unpinned the entry.load

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten by
another thread, until that entry is unpinned by a call to .unpin

Handle<Value> getIfPinned(const Key& k, bool wait = false) const;

This function returns the value stored for the key .k

If an entry for the given key is in the map, the function returns the value immediately, regardless of the value of .wait
If no entry for the given key is in the map and the parameter is false, the function returns a null handle.wait
If no entry for the given key is in the map and the parameter is true, the function blocks the calling thread if another thread is currently wait
attempting to load the same entry; once the other thread completes, completes and returns the value added by the other getIfPinned
thread.

void unpin(Position p);

This function removes an entry from the map. The iterator determines which entry to remove. (It must be an iterator that previously was passed to p p
.) The iterator is invalidated by this operation, so you must not use it again once returns. (Note that the implementation inned p unpin Cache

ensures that updates to the map never invalidate iterators to existing entries in the map; invalidates only the iterator for the removed entry.)unpin

void clear();

This function removes all entries in the map.

size_t size() const;

This function returns the number of entries in the map.

See Also

Servant Evictors
The C++ Handle Template
The C++ Shared and SimpleShared Classes
Background Save Evictor

https://doc.zeroc.com/display/Ice34/Servant+Evictors
https://doc.zeroc.com/pages/viewpage.action?pageId=5047934
https://doc.zeroc.com/pages/viewpage.action?pageId=5047939
https://doc.zeroc.com/display/Ice34/Background+Save+Evictor

	The C++ Cache Template

