
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Servant Activation and Deactivation
The term refers to making the presence of a servant for a particular Ice object known to the Ice run time. Activating a servant adds servant activation
an entry to the (ASM). Another way of looking at servant activation is to think of it as creating a link between the of an Ice Active Servant Map identity
object and the corresponding programming-language servant that handles requests for that Ice object. Once the Ice run time has knowledge of this
link, it can dispatch incoming requests to the correct servant. Without this link, that is, without a corresponding entry in the ASM, an incoming request
for the identity results in an . While a servant is activated, it is said to the corresponding Ice object.ObjectNotExistException incarnate

The inverse operation is known as . Deactivating a servant removes an entry for a particular identity from the ASM. Thereafter, servant deactivation
incoming requests for that identity are no longer dispatched to the servant and result in an .ObjectNotExistException

The object adapter offers a number of operations for managing servant activation and deactivation:

Slice

module Ice {
 local interface ObjectAdapter {
 // ...

 Object* add(Object servant, Identity id);
 Object* addWithUUID(Object servant);
 Object remove(Identity id);
 Object find(Identity id);
 Object findByProxy(Object* proxy);

 // ...
 };
};

The operations behave as follows:

add

The operation adds a servant with the given identity to the ASM. Requests are dispatched to that servant as soon as is called. The add add
return value is the proxy for the Ice object incarnated by that servant. The proxy embeds the identity passed to . add

You cannot call with the same identity more than once: attempts to add an already existing identity to the ASM result in an add AlreadyReg
. (It does not make sense to add two servants with the same identity because that would make it ambiguous as to isteredException

which servant should handle incoming requests for that identity.)

Note that it is possible to activate the same servant multiple times with different identities. In that case, the same single servant incarnates
multiple Ice objects. We explore the ramifications of this in more detail in our discussion of .server implementation techniques

addWithUUID

The operation behaves the same way as the operation but does not require you to supply an identity for the servant. addWithUUID add
Instead, generates a UUID as the identity for the corresponding Ice object. You can retrieve the generated identity by calling addWithUUID
the operation on the returned proxy. is useful to create identities for temporary objects, such as short-ice_getIdentity addWithUUID
lived session objects. (You can also use for persistent objects that do not have a natural identity, as we have done for the file addWithUUID
system application.)

remove

The operation breaks the association between an identity and its servant by removing the corresponding entry from the ASM; it remove
returns a reference to the removed servant.

Once the servant is deactivated, new incoming requests for the removed identity cause the client to receive an ObjectNotExistException
. Requests that are executing inside the servant at the time is called are allowed to complete normally. Once the last request for the remove
servant is complete, the object adapter drops its reference (or smart pointer, for C++) to the servant. At that point, the servant becomes
available for garbage collection (or is destroyed, for C++), provided there are no other references or smart pointers to the servant. The net
effect is that a deactivated servant is destroyed once it becomes idle.

Deactivating an implicitly calls on its active servants.object adapter remove

find

The operation performs a lookup in the ASM and returns the servant for the specified object identity. If no servant with that identity is find
registered, the operation returns null. Note that does not consult any or .find servant locators default servants

https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map#TheActiveServantMap-asm-diagram
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Server+Implementation+Techniques#ServerImplementationTechniques-default_servants
https://doc.zeroc.com/display/Ice35/Object+Adapter+States
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Default+Servants

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

findByProxy

The operation performs a lookup in the ASM and returns the servant with the object identity and facet that are embedded in findByProxy
the proxy. If no such servant is registered, the operation returns null. Note that does not consult any or findByProxy servant locators defaul

.t servants

See Also

The Active Servant Map
Object Identity
Object Adapter States
Server Implementation Techniques
Servant Locators
Default Servants

https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Default+Servants
https://doc.zeroc.com/display/Ice35/Default+Servants
https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Object+Adapter+States
https://doc.zeroc.com/display/Ice35/Server+Implementation+Techniques
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Default+Servants

	Servant Activation and Deactivation

