
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Dispatch Interceptors
A dispatch interceptor is a server-side mechanism that allows you to intercept incoming client requests before they are given to a servant. The
interceptor can examine the incoming request; in particular, it can see whether the request dispatch is collocation-optimized and examine the Current
information for the request.

A dispatch interceptor can dispatch a request to a servant and check whether the dispatch was successful; if not, the interceptor can choose to retry
the dispatch. This functionality is useful to automatically retry requests that have failed due to a recoverable error condition, such as a database
deadlock exception. (Freeze uses dispatch interceptors for this purpose in its .)evictor implementations

On this page:

Dispatch Interceptor API
Objective-C Mapping for Dispatch Interceptors

Using a Dispatch Interceptor

Dispatch Interceptor API
Dispatch interceptors are not defined in Slice, but are provided as an API that is specific to each programming language. The remainder of this
section presents the interceptor API for C++; for Java and .NET, the API is analogous, so we do not show it here.

In C++, a dispatch interceptor has the following interface:

C++

namespace Ice {
 class DispatchInterceptor : public virtual Object {
 public:
 virtual DispatchStatus dispatch(Request&) = 0;
 };

 typedef IceInternal::Handle<DispatchInterceptor> DispatchInterceptorPtr;
}

Note that a , that is, you use a dispatch interceptor as a servant.DispatchInterceptor is-a Object

To create a dispatch interceptor, you must derive a class from and provide an implementation of the pure virtual DispatchInterceptor dispatch
function. The job of is to pass the request to the servant and to return a dispatch status, defined as follows:dispatch

C++

namespace Ice {
 enum DispatchStatus {
 DispatchOK, DispatchUserException, DispatchAsync
 };
}

The enumerators indicate how the request was dispatched:

DispatchOK
The request was dispatched synchronously and completed without an exception.

DispatchUserException
The request was dispatched synchronously and raised a user exception.

DispatchAsync
The request was dispatched successfully as an asynchronous request; the result of the request is not available to the interceptor because
the result is delivered to the AMD callback when the request completes.

The Ice run time provides basic information about the request to the function in the form of a object:dispatch Request

https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/Freeze+Evictors

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

namespace Ice {
 class Request {
 public:
 virtual bool isCollocated();
 virtual const Current& getCurrent();
 };
}

isCollocated returns true if the dispatch is directly into the target servant as a . If the dispatch is not collocation-optimized dispatch
collocation-optimized, the function returns false.
getCurrent provides access to the object for the request, which provides access to information about the request, such as the Current
object identity of the target object, the object adapter used to dispatch the request, and the operation name.

Note that , for performance reasons, is thread-safe. This means that you must not concurrently dispatch from different threads using the Request not
same object. (Concurrent dispatch for different requests does not cause any problems.)Request

To use a dispatch interceptor, you instantiate your derived class and register it as a servant with the Ice run time in the usual way, such as by adding
the interceptor to the (ASM), or returning the interceptor as a servant from a call to on a .Active Servant Map locate servant locator

Objective-C Mapping for Dispatch Interceptors

The Objective-C mapping in Ice Touch does not support AMD, therefore the return type of the method is simplified to a boolean:dispatch

Objective-C

@protocol ICEDispatchInterceptor <ICEObject>
-(BOOL) dispatch:(id<ICERequest>)request;
@end

A return value of is equivalent to and indicates that the request completed without an exception. A return value of is equivalent YES DispatchOK NO
to .DispatchUserException

Similarly, the protocol omits the method because collocation optimization is not supported.ICERequest isCollocated

Using a Dispatch Interceptor
Your implementation of the function must dispatch the request to the actual servant. Here is a very simple example implementation of an dispatch
interceptor that dispatches the request to the servant passed to the interceptor's constructor:

C++

class InterceptorI : public Ice::DispatchInterceptor {
public:
 InterceptorI(const Ice::ObjectPtr& servant)
 : _servant(servant) {}

 virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
 return _servant->ice_dispatch(request);
 }

 Ice::ObjectPtr _servant;
};

Note that our implementation of calls on the target servant to dispatch the request. does the work of dispatch ice_dispatch ice_dispatch
actually (synchronously) invoking the operation.

Also note that returns whatever is returned by . For synchronous dispatch, you should always implement your interceptor dispatch ice_dispatch
in this way and not change this return value.

https://doc.zeroc.com/display/Ice35/Location+Transparency
https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Servant+Locators

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

We can use this interceptor to intercept requests to a servant of any type as follows:

C++

ExampleIPtr servant = new ExampleI;
Ice::DispatchInterceptorPtr interceptor = new InterceptorI(servant);
adapter->add(interceptor, communicator->stringToIdentity("ExampleServant"));

Note that, because dispatch interceptor servant, this means that the servant to which the interceptor dispatches need not be the actual servant. is-a
Instead, it could be another dispatch interceptor that ends up dispatching to the real servant. In other words, you can chain dispatch interceptors;
each interceptor's function is called until, eventually, the last interceptor in the chain dispatches to the actual servant.dispatch

A more interesting use of a dispatch interceptor is to retry a call if it fails due to a recoverable error condition. Here is an example that retries a
request if it raises a local exception defined in Slice as follows:

Slice

local exception DeadlockException { /* ... */ };

Note that this is a exception. Local exceptions that are thrown by the servant propagate to and can be caught there. A database local dispatch
might throw such an exception if the database detects a locking conflict during an update. We can retry the request in response to this exception
using the following implementation:dispatch

C++

virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
 while (true) {
 try {
 return _servant->ice_dispatch(request);
 } catch (const DeadlockException&) {
 // Happens occasionally
 }
 }
}

Of course, a more robust implementation might limit the number of retries and possibly add a delay before retrying.

You can also retry an asynchronous dispatch. In this case, each asynchronous dispatch attempt creates a new AMD callback object.

If the response for the retried request has been sent already, the interceptor receives a . Your interceptor must ResponseSentException
either not handle this exception (or rethrow it) or return .DispatchAsync
If the response for the request has not been sent yet, the Ice run time ignores any call to or on the old ice_response ice_exception
AMD callback.

If an operation throws a user exception (as opposed to a local exception), the user exception cannot be caught by as an exception but, dispatch
instead, is reported by the return value of : a return value of indicates that the operation raised a user ice_dispatch DispatchUserException
exception. You can retry a request in response to a user exception as follows:

C++

virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
 Ice::DispatchStatus d;
 do {
 d = _servant->ice_dispatch(request);
 } while (d == Ice::DispatchUserException);
 return d;
}

This is fine as far as it goes, but not particularly useful because the preceding code retries if kind of user exception is thrown. However, typically, any
we want to retry a request only if a user exception is thrown. The problem here is that the function does not have direct access to specific dispatch
the actual exception that was thrown — all it knows is that user exception was thrown, but not which one.some

https://doc.zeroc.com/display/Ice35/Local+Types

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

To retry a request for a specific user exception, you need to implement your servants such that they leave some "footprint" behind if they throw the
exception of interest. This allows your request interceptor to test whether the user exception should trigger a retry. There are various techniques you
can use to achieve this. For example, you can use thread-specific storage to test a retry flag that is set by the servant if it throws the exception or, if
you use transactions, you can attach the retry flag to the transaction context. However, doing so is more complex; the intended use case is to permit
retry of requests in response to local exceptions, so we suggest you retry requests only for local exceptions.

The most common use case for a dispatch interceptor is as a . Rather than having an explicit interceptor for individual servants, you default servant
can register a dispatch interceptor as default servant. You can then choose the "real" servant to which to dispatch the request inside , prior dispatch
to calling . This allows you to intercept and selectively retry requests based on their outcome, which cannot be done using a servant ice_dispatch
locator.

See Also

The Current Object
Location Transparency
The Active Servant Map
Servant Locators
Freeze Evictors
Default Servants

https://doc.zeroc.com/display/Ice35/Default+Servants
https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/Location+Transparency
https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Freeze+Evictors
https://doc.zeroc.com/display/Ice35/Default+Servants

	Dispatch Interceptors

