Ice 3.5.1 Documentation

Example of a File System Server in Java

This page presents the source code for a Java server that implements our file system and communicates with the client we wrote earlier. The code is
fully functional, apart from the required interlocking for threads.

Note that the server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be present
just the same for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application
code so that you can concentrate on developing application logic instead of networking infrastructure.

@ The server code shown here is not quite correct as it stands: if two clients access the same file in parallel, each via a different thread, one
thread may read the _I i nes data member while another thread updates it. Obviously, if that happens, we may write or return garbage or,
worse, crash the server. However, it is trivial to make the r ead and wr i t e operations thread-safe. We discuss thread safety in The Ice
Threading Model.

On this page:

® |Implementing a File System Server in Java
® Server Main Program in Java
® Filel Servant Class in Java
® Directoryl Servant Class in Java
© Directoryl Data Members
© Directoryl Constructor
© Directoryl Methods

Implementing a File System Server in Java

We have now seen enough of the server-side Java mapping to implement a server for our file system. (You may find it useful to review these Slice
definitions before studying the source code.)

Our server is composed of three source files:

® Server.java
This file contains the server main program.

® Filesystem Directoryl.java
This file contains the implementation for the Di r ect or y servants.

® Filesystem Filel.java
This file contains the implementation for the Fi | e servants.

Server Main Program in Java

Our server main program, in the file Ser ver . j ava, uses the | ce. Appl i cati on class. The r un method installs a shutdown hook, creates an object
adapter, instantiates a few servants for the directories and files in the file system, and then activates the adapter. This leads to a main program as
follows:

Java
import Filesystem *;

public class Server extends |ce.Application {
public int
run(String[] args)

11

/'l Terminate cleanly on receipt of a signal
11

shut downOnl nterrupt ();

/] Create an object adapter (stored in the _adapter

/1 static nenbers)

/1

I ce. Obj ect Adapt er adapter = conmuni cator (). createObj ect Adapt er Wt hEndpoi nt s(
"Si npl eFi | esystent, "default -p 10000");

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Client+in+Java
https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/The+Server-Side+main+Method+in+Java#TheServerSidemainMethodinJava-application
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model

Ice 3.5.1 Documentation

Directoryl._adapter = adapter;
Filel._adapter = adapter;

/] Create the root directory (with nanme "/" and no parent)
/1
Directoryl root = new Directoryl("/", null);

/] Create a file "README" in the root directory
/1
File file = new Filel ("README", root);
String[] text;
text = new String[] {
"This file systemcontains a collection of poetry."
}
try {
file.wite(text, null);
} catch (GenericError e) {
Systemerr.println(e.reason);

}

/Il Create a directory "Coleridge" in the root directory
/1
Directoryl coleridge = new Directoryl ("Col eridge", root);

/'l Create a file "Kubla_Khan" in the Coleridge directory

/1

file = new Fil el ("Kubl a_Khan", col eridge);

text = new String[]{ "In Xanadu did Kubl a Khan",
"A stately pleasure-done decree:",
"Where Al ph, the sacred river, ran",
"Through caverns neasurel ess to man",
"Down to a sunless sea." };

try {
file.wite(text, null);

} catch (CGenericError e) {
Systemerr.println(e.reason);

}

/1 All objects are created, allow client requests now
/1
adapter.activate();

/1 Vait until we are done
/1
communi cat or () . wai t For Shut down() ;

return O;

}

public static void
mai n(String[] args)
{
Server app = new Server();
System exi t (app. mai n("Server", args));

The code imports the contents of the Fi | esyst empackage. This avoids having to continuously use fully-qualified identifiers with a Fi | esyst em
prefix.

The next part of the source code is the definition of the Ser ver class, which derives from | ce. Appl i cat i on and contains the main application
logic in its r un method. Much of this code is boiler plate that we saw previously: we create an object adapter, and, towards the end, activate the
object adapter and call wai t For Shut down.

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the structure
shown below:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Yy (’“\1 RootDir

\ = Directo

/ \
. = File _)f \x\.

Coleridge |) .README
o

Kubla-Khan

A small file system.

As we will see shortly, the servants for our directories and files are of type Di rect oryl and Fi | el , respectively. The constructor for either type of
servant accepts two parameters, the name of the directory or file to be created and a reference to the servant for the parent directory. (For the root
directory, which has no parent, we pass a null parent.) Thus, the statement

Java

Directoryl root = new Directoryl("/", null);

creates the root directory, with the name "/ " and no parent directory.

Here is the code that establishes the structure in the above illustration:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Java

/'l Create the root directory (with nane "/" and no parent)
11
Directoryl root = new Directoryl("/", null);

/] Create a file "README" in the root directory
11
File file = new Fil el ("READVE"', root);
String[] text;
text = new String[] {
"This file systemcontains a collection of poetry."
b
try {
file.wite(text, null);
} catch (CGenericError e) {
Systemerr.println(e.reason);

}

/Il Create a directory "Coleridge" in the root directory
/1
Directoryl coleridge = new Directoryl ("Col eridge", root);

/]l Create a file "Kubla_Khan" in the Coleridge directory

/1

file = new Fil el ("Kubl a_Khan", col eridge);

text = new String[]{ "In Xanadu did Kubl a Khan",
"A stately pleasure-done decree:",
"Where Al ph, the sacred river, ran",
"Through caverns neasurel ess to nan",
"Down to a sunless sea." };

try {
file.wite(text, null);

} catch (CGenericError e) {
Systemerr.println(e.reason);

}

We first create the root directory and a file READVE within the root directory. (Note that we pass a reference to the root directory as the parent when
we create the new node of type Fi | el .)

The next step is to fill the file with text:

Java

String[] text;
text = new String[] {
"This file systemcontains a collection of poetry."
i
try {
file.wite(text, null);
} catch (GenericError e) {
Systemerr.println(e.reason);

}

Recall that Slice sequences by default map to Java arrays. The Slice type Li nes is simply an array of strings; we add a line of text to our README file
by initializing the t ext array to contain one element.

Finally, we call the Slice wr i t e operation on our Fi | el servant by writing:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Sequences

Ice 3.5.1 Documentation

Java

file.wite(text, null);

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a reference to the
servant (of type Fi | el) and not via a proxy (of type Fi | ePr x), the Ice run time does not know that this call is even taking place — such a direct call
into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary Java function call.

In similar fashion, the remainder of the code creates a subdirectory called Col er i dge and, within that directory, a file called Kubl a_Khan to
complete the structure in the illustration listed above.

Fi | el Servant Class in Java

Our Fi | el servant class has the following basic structure:

Java

public class Filel extends _FileDisp

{
/1 Constructor and operations here...
public static |ce.CbjectAdapter _adapter;
private String _naneg;
private Directoryl _parent;
private String[] _lines;

}

The class has a number of data members:

® _adapter
This static member stores a reference to the single object adapter we use in our server.

® _nane
This member stores the name of the file incarnated by the servant.

L]
_parent
This member stores the reference to the servant for the file's parent directory.

® lines
This member holds the contents of the file.

The _nane and _par ent data members are initialized by the constructor:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Java
public
Filel (String nanme, Directoryl parent)
{
_nane = nane;
_parent = parent;
assert(_parent !'= null);

/] Create an identity

/1

Ice.ldentity nylD = new Ice.ldentity();

nyl D.name = java.util.UUl D.randomJul D().toString();

/1 Add the identity to the object adapter
/1
_adapter.add(this, nylD);

/'l Create a proxy for the new node and

// add it as a child to the parent

/1

NodePr x t hi sNode = NodePr xHel per. uncheckedCast (_adapt er. creat eProxy(nyl D)) ;
_parent. addChi | d(t hi sNode) ;

After initializing the _nane and _par ent members, the code verifies that the reference to the parent is not null because every file must have a parent
directory. The constructor then generates an identity for the file by calling j ava. uti | . UUl D. randomJUl D and adds itself to the servant map by
calling Obj ect Adapt er . add. Finally, the constructor creates a proxy for this file and calls the addChi | d method on its parent directory. addChi | d
is a helper function that a child directory or file calls to add itself to the list of descendant nodes of its parent directory. We will see the implementation
of this function in Di r ect or yl Methods.

The remaining methods of the Fi | el class implement the Slice operations we defined in the Node and Fi | e Slice interfaces:

Java

/1 Slice Node::name() operation

public String
nanme(lce. Current current)

{

return _nane;

}

/Il Slice File::read() operation

public String[]
read(lce.Current current)

{

return _lines;

}
/1 Slice File::wite() operation
public void

wite(String[] text, lce.Current current)
throws GenericError

{
}

_lines = text;

The nane method is inherited from the generated Node interface (which is a base interface of the _Fi | eDi sp class from which Fi | el is derived). It
returns the value of the _nane member.

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

The r ead and wr i t e methods are inherited from the generated Fi | e interface (which is a base interface of the _Fi | eDi sp class from which Fi | el
is derived) and return and set the _I i nes member.

Di rect oryl Servant Class in Java

The Di rect oryl class has the following basic structure:

Java

package Fil esystem

public final class Directoryl extends _DirectoryD sp

{

/1 Constructor and operations here...

public static |Ice.Qbject Adapter _adapter;

private String _naneg;

private Directoryl _parent;

private java.util.ArrayLi st<NodePrx> _contents = new java.util.ArrayLi st <NodePrx>();
}

Di rect oryl Data Members

As for the Fi | el class, we have data members to store the object adapter, the name, and the parent directory. (For the root directory, the _par ent
member holds a null reference.) In addition, we have a _cont ent s data member that stores the list of child directories. These data members are
initialized by the constructor:

Java

public
Directoryl (String nane, Directoryl parent)
{

_nanme = nane,

_parent = parent;

/Il Create an identity. The parent has the
/] fixed identity "RootDir"

/1
Ice.ldentity nylD = new Ice.ldentity();
nyl D.name = _parent !'= null ? java.util.UU D.randonJulD().toString() : "RootDir";

/1 Add the identity to the object adapter
/1

_adapter.add(this, nylD);

/| Create a proxy for the new node and add it as a
/1 child to the parent

11
NodePr x thi sNode = NodePr xHel per. uncheckedCast (_adapt er. creat eProxy(nyl D)) ;
if (_parent != null)

_parent. addChi | d(t hi sNode) ;

Di rect oryl Constructor

The constructor creates an identity for the new directory by calling j ava. uti | . UUI D. r andonJUl D. (For the root directory, we use the fixed identity
"Root Di r".) The servant adds itself to the servant map by calling Obj ect Adapt er . add and then creates a reference to itself and passes it to the a
ddChi | d helper function.

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Di rect oryl Methods

addChi | d adds the passed reference to the _cont ent s list:

Java
voi d
addChi | d(NodePrx chi | d)
{
_contents. add(child);
}

The remainder of the operations, narme and | i st, are equally trivial:

Java

public String
nanme(lce.Current current)

{
return _nane;
}
I/l Slice Directory::list() operation

publ i c NodePrx[]
list(lce.Current current)

{
NodePrx[] result = new NodePrx[_contents.size()];
_contents.toArray(result);
return result;

}

Note that the _cont ent s member is of type j ava. uti | . ArrayLi st <NodePr x>, which is convenient for the implementation of the addChi | d
method. However, this requires us to convert the list into a Java array in order to return it from the | i st operation.

See Also

Slice for a Simple File System

Example of a File System Client in Java
The Server-Side main Method in Java
Java Mapping for Sequences

The Ice Threading Model

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Client+in+Java
https://doc.zeroc.com/display/Ice35/The+Server-Side+main+Method+in+Java
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model

	Example of a File System Server in Java

