
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Classes as Unions
Slice does not offer a dedicated union construct because it is redundant. By deriving classes from a common base class, you can create the same
effect as with a union:

Slice

interface ShapeShifter {
 Shape translate(Shape s, long xDistance, long yDistance);
};

The parameter of the operation can be viewed as a union of two members: a and a . The receiver of a s translate Circle Rectangle Shape
instance can use the of the instance to decide whether it received a or a . Alternatively, if you want something more type ID Circle Rectangle
along the lines of a conventional discriminated union, you can use the following approach:

Slice

class UnionDiscriminator {
 int d;
};

class Member1 extends UnionDiscriminator {
 // d == 1
 string s;
 float f;
};

class Member2 extends UnionDiscriminator {
 // d == 2
 byte b;
 int i;
};

With this approach, the class provides a discriminator value. The "members" of the union are the classes that are derived UnionDiscriminator
from . For each derived class, the discriminator takes on a distinct value. The receiver of such a union uses the discriminator UnionDiscriminator
value in a statement to select the active union member.switch

See Also

Type IDs

https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Type+IDs

	Classes as Unions

