Ice 3.4.2 Documentation

Stats Facility

The Ice run time uses the | ce: : St at s interface to report the number of bytes sent and received over the wire on every operation invocation:

Slice

nmodul e Ice {
local interface Stats {
voi d bytesSent(string protocol, int num;
voi d bytesReceived(string protocol, int num;
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local interface Comunicator {
Stats getStats();
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The Ice run time calls byt esRecei ved as it reads data from the network and byt esSent as it writes data to the network. A very simple
implementation of the St at s interface could look as follows:

C++

class MyStats : public virtual Ice::Stats {

blic:
> 1/i rtual void bytesSent(const string& prot, Ice::Int num
{ cerr << prot << ": sent " << num<< " bytes" << endl;
}
virtual void bytesReceived(const string& prot, Ice::Int)
{ cerr << prot << ": received " << num << " bytes" << endl;
}
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To register your implementation, you must passitinan | ni ti al i zat i onDat a parameter when you initialize a communicator:

C++

lce::InitializationData id;
id.stats = new WStats;
Ice::ComunicatorPtr ic = Ice::initialize(id);

You can install a St at s object on either the client or the server side (or both). Here is some example output produced by installing a My St at s object
in a simple server:

tcp: received 14 bytes
tcp: received 32 bytes
tcp: sent 26 bytes
tcp: received 14 bytes
tcp: received 33 bytes
tcp: sent 25 bytes

In practice, your St at s implementation will probably be a bit more sophisticated: for example, the object can accumulate statistics in member
variables and make the accumulated statistics available via member functions, instead of simply printing everything to the standard error output.
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