Ice 3.4.2 Documentation

Stats Facility

The Ice run time uses the | ce: : St at s interface to report the number of bytes sent and received over the wire on every operation invocation:

Slice

nmodul e Ice {
local interface Stats {
voi d bytesSent(string protocol, int num;
voi d bytesReceived(string protocol, int num;

1

local interface Comunicator {
Stats getStats();
/1
b
b

The Ice run time calls byt esRecei ved as it reads data from the network and byt esSent as it writes data to the network. A very simple
implementation of the St at s interface could look as follows:

C++

class MyStats : public virtual Ice::Stats {

blic:
> 1/i rtual void bytesSent(const string& prot, Ice::Int num
{ cerr << prot << ": sent " << num<< " bytes" << endl;
}
virtual void bytesReceived(const string& prot, Ice::Int)
{ cerr << prot << ": received " << num << " bytes" << endl;
}

3

To register your implementation, you must passitinan | ni ti al i zat i onDat a parameter when you initialize a communicator:

C++

lce::InitializationData id;
id.stats = new WStats;
Ice::ComunicatorPtr ic = Ice::initialize(id);

You can install a St at s object on either the client or the server side (or both). Here is some example output produced by installing a My St at s object
in a simple server:

tcp: received 14 bytes
tcp: received 32 bytes
tcp: sent 26 bytes
tcp: received 14 bytes
tcp: received 33 bytes
tcp: sent 25 bytes

In practice, your St at s implementation will probably be a bit more sophisticated: for example, the object can accumulate statistics in member
variables and make the accumulated statistics available via member functions, instead of simply printing everything to the standard error output.

See Also

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Communicator+Initialization

Ice 3.4.2 Documentation

® Communicator Initialization

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Communicator+Initialization

	Stats Facility

