Here we present a Java implementation of the file system server.
On this page:
Generating the File System Maps in Java
Now that we have selected our key and value types, we can generate the maps as follows:
$ slice2freezej -I$(ICE_HOME)/slice -I. --ice --dict \ FilesystemDB.IdentityFileEntryMap,Ice::Identity,\ FilesystemDB::FileEntry \ IdentityFileEntryMap FilesystemDB.ice \ $(ICE_HOME)/slice/Ice/Identity.ice $ slice2freezej -I$(ICE_HOME)/slice -I. --ice --dict \ FilesystemDB.IdentityDirectoryEntryMap,Ice::Identity,\ FilesystemDB::DirectoryEntry \ IdentityDirectoryEntryMap FilesystemDB.ice \ $(ICE_HOME)/slice/Ice/Identity.ice
The resulting map classes are named IdentityFileEntryMap
and IdentityDirectoryEntryMap
.
The Server Main Program in Java
The server's main program is very simple:
import Filesystem.*; import FilesystemDB.*; public class Server extends Ice.Application { public Server(String envName) { _envName = envName; } public int run(String[] args) { Ice.ObjectAdapter adapter = communicator().createObjectAdapter("MapFilesystem"); Freeze.Connection connection = null; try { connection = Freeze.Util.createConnection(communicator(), _envName); IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, FileI.filesDB(), true); IdentityDirectoryEntryMap dirDB = new IdentityDirectoryEntryMap(connection, DirectoryI.directoriesDB(), true); adapter.addDefaultServant(new FileI(communicator(), _envName), "file"); adapter.addDefaultServant(new DirectoryI(communicator(), _envName), ""); adapter.activate(); communicator().waitForShutdown(); } finally { connection.close(); } return 0; } public static void main(String[] args) { Server app = new Server("db"); app.main("MapServer", args, "config.server"); System.exit(0); } private String _envName; }
First, we import the Filesystem
and FilesystemDB
packages.
Next, we define the class FilesystemApp
as a subclass of Ice.Appli
cation
, and provide a constructor taking a string argument:
FilesystemApp(const string& envName) : _envName(envName) {}
The string argument represents the name of the database environment, and is saved for later use in run
.
The interesting part of run
are the few lines of code that create the database connection and the two maps that store files and directories, plus the code to add the two default servants:
connection = Freeze.Util.createConnection(communicator(), _envName); IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, FileI.filesDB(), true); IdentityDirectoryEntryMap dirDB = new IdentityDirectoryEntryMap(connection, DirectoryI.directoriesDB(), true); adapter.addDefaultServant(new FileI(communicator(), _envName), "file"); adapter.addDefaultServant(new DirectoryI(communicator(), _envName), "");
run
keeps the database connection open for the duration of the program for performance reasons. As we will see shortly, individual operation implementations will use their own connections; however, it is substantially cheaper to create second (and subsequent connections) than it is to create the first connection.
For the default servants, we use file
as the category for files. For directories, we use the empty default category.
Implementing FileI
with a Freeze Map in Java
The class definition for FileI
is very simple:
public class FileI extends _FileDisp { public FileI(Ice.Communicator communicator, String envName) { _communicator = communicator; _envName = envName; } // Slice operations... public static String filesDB() { return "files"; } private void halt(Freeze.DatabaseException e) { java.io.StringWriter sw = new java.io.StringWriter(); java.io.PrintWriter pw = new java.io.PrintWriter(sw); e.printStackTrace(pw); pw.flush(); _communicator.getLogger().error( "fatal database error\n" + sw.toString() + "\n*** Halting JVM ***"); Runtime.getRuntime().halt(1); } private Ice.Communicator _communicator; private String _envName; }
The FileI
class stores the communicator and the environment name. These members are initialized by the constructor. The filesDB
static method returns the name of the file map, and the halt
member function is used to stop the server if it encounters a catastrophic error.
The Slice operations all follow the same implementation strategy: we create a database connection and the file map and place the body of the operation into an infinite loop:
public String someOperation(/* ... */ Ice.Current c) { Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName); try { IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB()); for (;;) { try { // Operation implementation here... } catch (Freeze.DeadlockException ex) { continue; } catch (Freeze.DatabaseException ex) { halt(ex); } } } finally { connection.close(); } }
Each operation creates its own database connection and map for concurrency reasons: the database takes care of all the necessary locking, so there is no need for any other synchronization in the server. If the database detects a deadlock, the code handles the corresponding DeadlockException
and simply tries again until the operation eventually succeeds; any other database exception indicates that something has gone seriously wrong and terminates the server.
Here is the implementation of the name
method:
public String name(Ice.Current c) { Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName); try { IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB()); for (;;) { try { FileEntry entry = fileDB.get(c.id); if (entry == null) { throw new Ice.ObjectNotExistException(); } return entry.name; } catch (Freeze.DeadlockException ex) { continue; } catch (Freeze.DatabaseException ex) { halt(ex); } } } finally { connection.close(); } }
The implementation could hardly be simpler: the default servant uses the identity in the Current
object to index into the file map. If a record with this identity exists, it returns the name of the file as stored in the FileEntry
structure in the map. Otherwise, if no such entry exists, it throws ObjectNotExistException
. This happens if the file existed at some time in the past but has since been destroyed.
The read
implementation is almost identical. It returns the text that is stored by the FileEntry
:
public String[] read(Ice.Current c) { Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName); try { IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB()); for (;;) { try { FileEntry entry = fileDB.get(c.id); if (entry == null) { throw new Ice.ObjectNotExistException(); } return entry.text; } catch (Freeze.DeadlockException ex) { continue; } catch (Freeze.DatabaseException ex) { halt(ex); } } } finally { connection.close(); } }
The write
implementation updates the file contents and calls put
on the iterator to update the map with the new contents:
public void write(String[] text, Ice.Current c) throws GenericError { Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName); try { IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB()); for (;;) { try { FileEntry entry = fileDB.get(c.id); if (entry == null) { throw new Ice.ObjectNotExistException(); } entry.text = text; fileDB.put(c.id, entry); break; } catch (Freeze.DeadlockException ex) { continue; } catch (Freeze.DatabaseException ex) { halt(ex); } } } finally { connection.close(); } }
Finally, the destroy
implementation for files must update two maps: it needs to remove its own entry in the file map as well as update the nodes
map in the parent to remove itself from the parent's map of children. This raises a potential problem: if one update succeeds but the other one fails, we end up with an inconsistent file system: either the parent still has an entry to a non-existent file, or the parent lacks an entry to a file that still exists.
To make sure that the two updates happen atomically, destroy
performs them in a transaction:
public void destroy(Ice.Current c) throws PermissionDenied { Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName); try { IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB()); IdentityDirectoryEntryMap dirDB = new IdentityDirectoryEntryMap(connection, DirectoryI.directoriesDB()); for (;;) { Freeze.Transaction txn = null; try { txn = connection.beginTransaction(); FileEntry entry = fileDB.get(c.id); if (entry == null) { throw new Ice.ObjectNotExistException(); } DirectoryEntry dirEntry = (DirectoryEntry)dirDB.get(entry.parent); if (dirEntry == null) { halt(new Freeze.DatabaseException( "consistency error: file without parent")); } dirEntry.nodes.remove(entry.name); dirDB.put(entry.parent, dirEntry); fileDB.remove(c.id); txn.commit(); txn = null; break; } catch (Freeze.DeadlockException ex) { continue; } catch (Freeze.DatabaseException ex) { halt(ex); } finally { if (txn != null) { txn.rollback(); } } } } finally { connection.close(); } }
As you can see, the code first establishes a transaction and then locates the file in the parent directory's map of nodes. After removing the file from the parent, the code updates the parent's persistent state by calling put
on the parent iterator and then removes the file from the file map before committing the transaction.
Implementing DirectoryI
with a Freeze Map in Java
The DirectoryI.directoriesDB
implementation returns the string directories
, and the halt
implementation is the same as for FileI
, so we do not show them here.
Turning to the constructor, we must cater for two different scenarios:
- The server is started with a database that already contains a number of nodes.
- The server is started for the very first time with an empty database.
This means that the root directory (which must always exist) may or may not be present in the database. Accordingly, the constructor looks for the root directory (with the fixed identity RootDir
); if the root directory does not exist in the database, it creates it:
public DirectoryI(Ice.Communicator communicator, String envName) { _communicator = communicator; _envName = envName; Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName); try { IdentityDirectoryEntryMap dirDB = new IdentityDirectoryEntryMap(connection, directoriesDB()); for (;;) { try { Ice.Identity rootId = new Ice.Identity("RootDir", ""); DirectoryEntry entry = dirDB.get(rootId); if (entry == null) { dirDB.put(rootId, new DirectoryEntry("/", new Ice.Identity("", ""), null)); } break; } catch (Freeze.DeadlockException ex) { continue; } catch (Freeze.DatabaseException ex) { halt(ex); } } } finally { connection.close(); } }
Next, let us examine the implementation of createDirectory
. Similar to the FileI::destroy
operation, createDirectory
must update both the parent's nodes map and create a new entry in the directory map. These updates must happen atomically, so we perform them in a separate transaction:
public DirectoryPrx createDirectory(String name, Ice.Current c) throws NameInUse { Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName); try { IdentityDirectoryEntryMap dirDB = new IdentityDirectoryEntryMap(connection, directoriesDB()); for (;;) { Freeze.Transaction txn = null; try { txn = connection.beginTransaction(); DirectoryEntry entry = dirDB.get(c.id); if (entry == null) { throw new Ice.ObjectNotExistException(); } if(name.length() == 0 || entry.nodes.get(name) != null) { throw new NameInUse(name); } DirectoryEntry newEntry = new DirectoryEntry(name, c.id, null); Ice.Identity id = new Ice.Identity(java.util.UUID.randomUUID().toString(), ""); DirectoryPrx proxy = DirectoryPrxHelper.uncheckedCast(c.adapter.createProxy(id)); entry.nodes.put(name, new NodeDesc(name, NodeType.DirType, proxy)); dirDB.put(c.id, entry); dirDB.put(id, newEntry); txn.commit(); txn = null; return proxy; } catch (Freeze.DeadlockException ex) { continue; } catch (Freeze.DatabaseException ex) { halt(ex); } finally { if(txn != null) { txn.rollback(); } } } } finally { connection.close(); } }
After establishing the transaction, the code ensures that the directory does not already contain an entry with the same name and then initializes a new DirectoryEntry
, setting the name to the name of the new directory, and the parent to its own identity. The identity of the new directory is a UUID, which ensures that all directories have unique identities. In addition, the UUID prevents the accidental rebirth of a file or directory in the future.
The code then initializes a new NodeDesc
structure with the details of the new directory and, finally, updates its own map of children as well as adding the new directory to the map of directories before committing the transaction.
The createFile
implementation is almost identical, so we do not show it here. Similarly, the name
and destroy
implementations are almost identical to the ones for FileI
, so let us move to list
:
public NodeDesc[] list(Ice.Current c) { Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName); try { IdentityDirectoryEntryMap dirDB = new IdentityDirectoryEntryMap(connection, directoriesDB()); for (;;) { try { DirectoryEntry entry = dirDB.get(c.id); if (entry == null) { throw new Ice.ObjectNotExistException(); } NodeDesc[] result = new NodeDesc[entry.nodes.size()]; java.util.Iterator<NodeDesc> p = entry.nodes.values().iterator(); for (int i = 0; i < entry.nodes.size(); ++i) { result[i] = p.next(); } return result; } catch (Freeze.DeadlockException ex) { continue; } catch (Freeze.DatabaseException ex) { halt(ex); } } } finally { connection.close(); } }
Again, the code is very simple: it iterates over the nodes
map, adding each NodeDesc
structure to the returned sequence.
The find
implementation is even simpler, so we do not show it here.