C++98 Mapping for Classes
On this page:
Basic C++ Mapping for Classes
A Slice class is mapped to a C++ class with the same name. The generated class contains a public data member for each Slice data member (just as for structures and exceptions), and a virtual member function for each operation. Consider the following class definition:
class TimeOfDay { short hour; // 0 - 23 short minute; // 0 - 59 short second; // 0 - 59 string format(); // Return time as hh:mm:ss }
The Slice compiler generates the following code for this definition:
class TimeOfDay; typedef IceInternal::ProxyHandle<IceProxy::TimeOfDay> TimeOfDayPrx; typedef IceInternal::Handle<TimeOfDay> TimeOfDayPtr; class TimeOfDay : public virtual Ice::Object { public: Ice::Short hour; Ice::Short minute; Ice::Short second; virtual std::string format() = 0; TimeOfDay() {}; TimeOfDay(Ice::Short, Ice::Short, Ice::Short); virtual bool ice_isA(const std::string&); virtual const std::string& ice_id(); static const std::string& ice_staticId(); typedef TimeOfDayPrx ProxyType; typedef TimeOfDayPtr PointerType; // ... };
The ProxyType and PointerType definitions are for template programming.
There are a number of things to note about the generated code:
- The generated class
TimeOfDay
inherits fromIce::Object
. This means that all classes implicitly inherit fromIce::Object
, which is the ultimate ancestor of all classes. Note thatIce::Object
is not the same asIceProxy::Ice::Object
. In other words, you cannot pass a class where a proxy is expected and vice versa. - The generated class contains a public member for each Slice data member.
- The generated class has a constructor that takes one argument for each data member, as well as a default constructor.
- The generated class contains a pure virtual member function for each Slice operation.
- The generated class contains additional member functions:
ice_isA
,ice_id
,ice_staticId
, andice_factory
. - The compiler generates a type definition
TimeOfDayPtr
. This type implements a smart pointer that wraps dynamically-allocated instances of the class. In general, the name of this type is<class-name>Ptr
. Do not confuse this with<class-name>Prx
— that type exists as well, but is the proxy handle for the class, not a smart pointer.
There is quite a bit to discuss here, so we will look at each item in turn.
Inheritance from Ice::Object
in C++
Like interfaces, classes implicitly inherit from a common C++ base class, Ice::Object
. However, as shown in the figure below, classes inherited from Ice::Object
instead of Ice::ObjectPrx
(which is at the base of the inheritance hierarchy for proxies). As a result, you cannot pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.
Inheritance from Ice::ObjectPrx
and Ice::Object
.
Ice::Object
contains a number of member functions:
namespace Ice { class Object : public virtual IceUtil::Shared { public: virtual bool ice_isA(const std::string&, const Current& = emptyCurrent) const; virtual void ice_ping(const Current& = emptyCurrent) const; virtual std::vector<std::string> ice_ids(const Current& = emptyCurrent) const; virtual const std::string& ice_id(const Current& = emptyCurrent) const; static const std::string& ice_staticId(); virtual ObjectPtr ice_clone() const; virtual void ice_preMarshal(); virtual void ice_postUnmarshal(); virtual Ice::SlicedDataPtr ice_getSlicedData() const; virtual void ice_collectable(bool); virtual DispatchStatus ice_dispatch(Ice::Request&, const DispatchInterceptorAsyncCallbackPtr& = 0); virtual bool operator==(const Object&) const; virtual bool operator<(const Object&) const; }; }
The member functions of Ice::Object
behave as follows:
ice_isA
This function returnstrue
if the object supports the given type ID, andfalse
otherwise.
ice_ping
As for interfaces,ice_ping
provides a basic reachability test for the class. Note thatice_ping
is normally only invoked on the proxy for a class that might be remote because a class instance that is local (in the caller's address space) can always be reached.
ice_ids
This function returns a string sequence representing all of the type IDs supported by this object, including::Ice::Object
.
ice_id
This function returns the actual run-time type ID for a class. If you callice_id
through a smart pointer to a base instance, the returned type id is the actual (possibly more derived) type ID of the instance.
ice_staticId
This function returns the static type ID of a class.
ice_clone
This function makes a polymorphic shallow copy of a class.
ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its declared data members.
ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs to perform additional initialization using the values of its declared data members.ice_getSlicedData
This functions returns theSlicedData
object if the value has been sliced during un-marshaling or0
otherwise.
ice_collectable
Determines whether this object, and by extension the graph of all objects reachable from this object, are eligible for garbage collection when all external references to the graph have been released.
ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of dispatch interceptors.
operator==
operator<
The comparison operators permit you to use classes as elements of STL sorted containers. Note that sort order, unlike for structures, is based on the memory address of the class, not on the contents of its data members of the class.
Class Data Members in C++
By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the generated class contains a corresponding public data member. Optional data members are mapped to instances of the IceUtil::Optional
template.
If you wish to restrict access to a data member, you can modify its visibility using the protected
metadata directive. The presence of this directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by the class itself or by one of its subclasses. For example, the TimeOfDay
class shown below has the protected
metadata directive applied to each of its data members:
class TimeOfDay { ["protected"] short hour; // 0 - 23 ["protected"] short minute; // 0 - 59 ["protected"] short second; // 0 - 59 string format(); // Return time as hh:mm:ss }
The Slice compiler produces the following generated code for this definition:
class TimeOfDay : public virtual Ice::Object { public: virtual std::string format() = 0; // ... protected: Ice::Short hour; Ice::Short minute; Ice::Short second; };
For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member individually. For example, we can rewrite the TimeOfDay
class as follows:
["protected"] class TimeOfDay { short hour; // 0 - 23 short minute; // 0 - 59 short second; // 0 - 59 string format(); // Return time as hh:mm:ss }
Class Constructors in C++
Classes have a default constructor that default-constructs each data member. Members having a complex type, such as strings, sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for members having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal value.
To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition. The default constructor initializes each of these data members to its declared value. Optional data members are unset unless they declare default values.
Classes also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class instance in a single statement. For each optional data member, its corresponding constructor parameter uses the same mapping as for operation parameters, allowing you to pass its initial value or IceUtil::None
to indicate an unset value.
For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived class's data members, in base-to-derived order. For example:
class Base { int i; } class Derived extends Base { string s; }
This generates:
class Base : public virtual ::Ice::Object { public: ::Ice::Int i; Base() {}; explicit Base(::Ice::Int); // ... }; class Derived : public Base { public: ::std::string s; Derived() {}; Derived(::Ice::Int, const ::std::string&); // ... };
Note that single-parameter constructors are defined as explicit
, to prevent implicit argument conversions.
By default, derived classes derive non-virtually from their base class. If you need virtual inheritance, you can enable it using the ["cpp:virtual"]
metadata directive.
Class with Operations in C++
Deprecated Feature
Operations on classes are deprecated as of Ice 3.7. Skip this section unless you need to communicate with old applications that rely on this feature.
Operations of classes are mapped to pure virtual member functions in the generated class. This means that, if a class contains operations (such as the format
operation of our TimeOfDay
class), you must provide an implementation of the operation in a class that is derived from the generated class. For example:
class TimeOfDayI : public virtual TimeOfDay { public: virtual std::string format() { std::ostringstream s; s << setw(2) << setfill('0') << hour << ":"; s << setw(2) << setfill('0') << minute << ":"; s << setw(2) << setfill('0') << second; return s.c_str(); } };
Value Factories in C++
Value factories may be used for classes with or without operations and are not deprecated.
Having created a class such as FormattedTimeOfDayI
, we have an implementation and we can instantiate the FormattedTimeOfDayI
class, but we cannot receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:
interface Time { FormattedTimeOfDay get(); }
When a client invokes the get
operation, the Ice run time must instantiate and return an instance of the FormattedTimeOfDay
class. However, FormattedTimeOfDay
is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a FormattedTimeOfDayI
class that implements the abstract format
operation of the FormattedTimeOfDay
abstract class. In other words, we must provide the Ice run time with a factory that knows that the FormattedTimeOfDay
abstract class has a FormattedTimeOfDayI
concrete implementation.
To supply the Ice run time with a factory for our FormattedTimeOfDayI
class, we must supply a value factory implementation. The factory's create
operation is called by the Ice run time when it needs to instantiate a FormattedTimeOfDay
class. A possible implementation of our value factory is:
class ValueFactory : public Ice::ValueFactory { public: virtual Ice::ObjectPtr create(const std::string& type) { assert(type == FormattedTimeOfDay::ice_staticId()); return new FormattedTimeOfDayI; } };
The create
method is passed the type ID of the class to instantiate. For our FormattedTimeOfDay
class, the type ID is "::Module::FormattedTimeOfDay"
. Our implementation of create
checks the type ID: if it matches, the method instantiates and returns a FormattedTimeOfDayI
object. For other type IDs, the method asserts because it does not know how to instantiate other types of objects.
Note that we used the ice_staticId
method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise NoValueFactoryException
. By using ice_staticId
instead, we avoid any risk of a misspelled or obsolete type ID, and we can discover at compile time if a Slice class or module has been renamed.
Given a factory implementation, such as our ValueFactory
, we must inform the Ice run time of the existence of the factory:
Ice::CommunicatorPtr ic = ...; ic->getValueFactoryManager()->add(new ValueFactory, FormattedTimeOfDay::ice_staticId());
Now, whenever the Ice run time needs to instantiate a class with the type ID "::Module::FormattedTimeOfDay"
, it calls the create
method of the registered ValueFactory
instance.
Finally, keep in mind that if a class has only data members, but no operations, you do not need to create and register a value factory to receive instances of such a class. You're only required to register a value factory when a class has operations.